Show simple item record

MOFâ 5â Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption

dc.contributor.authorGamage, Nipuni‐dhanesha H.
dc.contributor.authorMcDonald, Kyle A.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2016-10-17T21:20:32Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09-19
dc.identifier.citationGamage, Nipuni‐dhanesha H. ; McDonald, Kyle A.; Matzger, Adam J. (2016). "MOFâ 5â Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption." Angewandte Chemie International Edition 55(39): 12099-12103.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/134282
dc.description.abstractAn unprecedented mode of reactivity of Zn4Oâ based metalâ organic frameworks (MOFs) offers a straightforward and powerful approach to polymerâ hybridized porous solids. The concept is illustrated with the production of MOFâ 5â polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOFâ 5 crystals after heating in pure styrene for 4â 24â h. The surface area and polystyrene content of the material can be fineâ tuned by controlling the duration of heating styrene in the presence of MOFâ 5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOFâ 5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOFâ 5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.MOFs packed with polystyrene: An unprecedented mode of reactivity of one of the best studied metalâ organic frameworks, MOFâ 5, offers a powerful approach to polymerâ hybridized porous solids. A MOFâ 5â polystyrene (MOFâ 5â PS) composite was directly produced from the monomer styrene. In the MOFâ 5â PS composites, polystyrene is grafted and uniformly distributed throughout, which leads to enhanced hydrolytic stability and unique guest adsorption.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMOFâ polymer composites
dc.subject.otherpolymers
dc.subject.othermetalâ organic frameworks
dc.subject.otherhydrolytic stability
dc.subject.otheradsorption
dc.titleMOFâ 5â Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134282/1/anie201606926_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134282/2/anie201606926-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134282/3/anie201606926.pdf
dc.identifier.doi10.1002/anie.201606926
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceD. Y. Siberio-Pérez, A. G. Wong-Foy, O. M. Yaghi, A. J. Matzger, Chem. Mater. 2007, 19, 3681 â 3685.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Zhang, Y. Hu, J. Ge, H. L. Jiang, S. H. Yu, J. Am. Chem. Soc. 2014, 136, 16978 â 16981.
dc.identifier.citedreferenceS. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309 â 319.
dc.identifier.citedreferenceH. J. Lee, W. Cho, M. Oh, Chem. Commun. 2012, 48, 221 â 223;
dc.identifier.citedreference 
dc.identifier.citedreferenceP. I. Ravikovitch, G. L. Haller, A. V. Neimark, Adv. Colloid Interface Sci. 1998, 76â 77, 203 â 226;
dc.identifier.citedreferenceP. I. Ravikovitch, A. V. Neimark, J. Phys. Chem. B 2001, 105, 6817 â 6823.
dc.identifier.citedreferenceP. Guo, D. Dutta, A. G. Wong-Foy, D. W. Gidley, A. J. Matzger, J. Am. Chem. Soc. 2015, 137, 2651 â 2657.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Seu, Dyes Pigm. 1995, 29, 227 â 240;
dc.identifier.citedreferenceJ. F. Deye, T. A. Berger, A. G. Anderson, Anal. Chem. 1990, 62, 615 â 622.
dc.identifier.citedreferenceM. Liu, A. G. Wong-Foy, R. S. Vallery, W. E. Frieze, J. K. Schnobrich, D. W. Gidley, A. J. Matzger, Adv. Mater. 2010, 22, 1598 â 1601;
dc.identifier.citedreferenceL. D. Tran, J. I. Feldblyum, A. G. Wong-Foy, A. J. Matzger, Langmuir 2015, 31, 2211 â 2217.
dc.identifier.citedreference 
dc.identifier.citedreferenceF. R. Mayo, J. Am. Chem. Soc. 1953, 75, 6133 â 6142;
dc.identifier.citedreferenceF. R. Mayo, J. Am. Chem. Soc. 1968, 90, 1289 â 1295;
dc.identifier.citedreferenceK. S. Khuong, W. H. Jones, W. A. Pryor, K. N. Houk, J. Am. Chem. Soc. 2005, 127, 1265 â 1277;
dc.identifier.citedreferenceY. Sun, Y. Wu, L. Chen, Z. Fu, Y. Sh, Polym. J. 2009, 41, 954 â 960.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. R. Hiatt, P. D. Bartlett, J. Am. Chem. Soc. 1959, 81, 1149 â 1154;
dc.identifier.citedreferenceW. C. Buzanowski, J. D. Graham, D. B. Priddy, E. Shero, Polymer 1992, 33, 3055 â 3059;
dc.identifier.citedreferenceW. A. Pryor, L. D. Lasswell, AdV. Free-Radical Chem. 1975, 5, 27 â 99.
dc.identifier.citedreference 
dc.identifier.citedreferenceH. Zhu, Q. Zhang, S. Zhu, ACS Appl. Mater. Interfaces 2016, 8, 17395â 17401;
dc.identifier.citedreferenceC. Leâ Calvez, M. Zouboulaki, C. Petit, L. Peeva, N. Shirshova, RSC Adv. 2016, 6, 17314 â 17317;
dc.identifier.citedreferenceP. Su, W. Li, C. Zhang, Q. Meng, C. Shen, G. Zhang, J. Mater. Chem. A 2015, 3, 20345 â 20351;
dc.identifier.citedreferenceY. Zhang, X. Feng, H. Li, Y. Chen, J. Zhao, S. Wang, L. Wang, B. Wang, Angew. Chem. Int. Ed. 2015, 54, 4259 â 4263; Angew. Chem. 2015, 127, 4333 â 4337;
dc.identifier.citedreferenceH. Liu, H. Zhu, S. Zhu, Macromol. Mater. Eng. 2015, 300, 191 â 197;
dc.identifier.citedreferenceI. Erucara, S. Keskin, J. Membr. Sci. 2012, 407â 408, 221 â 230;
dc.identifier.citedreferenceL. Bromberg, X. Su, T. A. Hatton, Chem. Mater. 2014, 26, 6257 â 6264;
dc.identifier.citedreferenceR. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.-R. Li, Angew. Chem. Int. Ed. 2014, 53, 9775 â 9779; Angew. Chem. 2014, 126, 9933 â 9937;
dc.identifier.citedreferenceX. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, Chem. Sci. 2013, 4, 983 â 992;
dc.identifier.citedreferenceJ. Huo, M. Marcello, A. Garai, D. Bradshaw, Adv. Mater. 2013, 25, 2717 â 2722;
dc.identifier.citedreferenceD. Zhao, S. Tan, D. Yuan, W. Lu, Y. H. Rezenom, H. Jiang, L.-Q. Wang, H.-C. Zhou, Adv. Mater. 2011, 23, 90 â 93;
dc.identifier.citedreferenceL. D. O’Neill, H. Zhang, D. Bradshaw, J. Mater. Chem. 2010, 20, 5720 â 5726.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ. Zhang, H. T. H. Nguyen, S. A. Miller, S. M. Cohen, Angew. Chem. Int. Ed. 2015, 54, 6152 â 6157; Angew. Chem. 2015, 127, 6250 â 6255;
dc.identifier.citedreferenceS. L. James, Chem. Soc. Rev. 2003, 32, 276 â 288;
dc.identifier.citedreferenceM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O. M. Yaghi, Science 2002, 295, 469 â 472;
dc.identifier.citedreferenceT.-H. Park, K. Koh, A. G. Wong-Foy, A. J. Matzger, Cryst. Growth Des. 2011, 11, 2059 â 2063;
dc.identifier.citedreferenceA. Dutta, A. G. Wong-Foy, A. J. Matzger, Chem. Sci. 2014, 5, 3729 â 3734;
dc.identifier.citedreferenceW. R. Wade, T. Corrales-Sanchez, T. C. Narayan, M. DincÄ , Energy Environ. Sci. 2013, 6, 2172 â 2177;
dc.identifier.citedreferenceK. Biradha, M. Fujita, Chem. Commun. 2001, 15 â 16.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Dong, H. Li, V. Chen, J. Mater. Chem. A 2013, 1, 4610 â 4630;
dc.identifier.citedreferenceP. S. Goh, A. F. Ismail, S. M. Sanip, B. C. Ng, M. Aziz, Sep. Purif. Technol. 2011, 81, 243 â 264.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. T. Culp, L. Sui, A. Goodman, D. Luebke, J. Colloid Interface Sci. 2013, 393, 278 â 285;
dc.identifier.citedreferenceZ. Zhang, H. T. H. Nguyen, S. A. Miller, A. M. Ploskonka, J. B. DeCoste, S. M. Cohen, J. Am. Chem. Soc. 2016, 138, 920 â 925;
dc.identifier.citedreferenceT. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrésâ Xamena, J. Gascon, Nat. Mater. 2015, 14, 48 â 55;
dc.identifier.citedreferenceW. Li, Y. Zhang, Q. Li, G. Zhang, Chem. Eng. Sci. 2015, 135, 232 â 257;
dc.identifier.citedreferenceB. Seoane, J. Coronas, I. Gascon, M. E. Benavides, O. Karvan, J. Caro, F. Kapteijn, J. Gascon, Chem. Soc. Rev. 2015, 44, 2421 â 2454;
dc.identifier.citedreferenceR. Adams, C. Carson, J. Ward, R. Tannenbaum, K. Koros, Microporous Mesoporous Mater. 2010, 131, 13 â 20;
dc.identifier.citedreferenceI. Erucar, G. Yilmaz, S. Keskin, Chem. Asian J. 2013, 8, 1692 â 1704;
dc.identifier.citedreferenceL. Zhang, Z. Hu, J. Jiang, J. Phys. Chem. C 2012, 116, 19268 â 19277;
dc.identifier.citedreferenceB. Zornoza, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Microporous Mesoporous Mater. 2013, 166, 67 â 78.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Shahida, K. Nijmeijera, S. Nehacheb, I. Vankelecomc, A. Deratanib, D. Quemener, J. Membr. Sci. 2015, 492, 21 â 32;
dc.identifier.citedreferenceJ. Gascon, F. Kapteijn, B. Zornoza, V. Sebastia’n, C. Casado, J. Coronas, Chem. Mater. 2012, 24, 2829 â 2844;
dc.identifier.citedreferenceH. Vinh-Thang, S. Kaliaguine, Chem. Rev. 2013, 113, 4980 â 5028.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. Lin, L. Ge, L. Hou, E. Strounina, V. Rudolph, Z. Zhu, ACS Appl. Mater. Interfaces 2014, 6, 5609 â 5618;
dc.identifier.citedreferenceM. S. Denny,â Jr., S. M. Cohen, Angew. Chem. Int. Ed. 2015, 54, 9029 â 9032; Angew. Chem. 2015, 127, 9157 â 9160;
dc.identifier.citedreferenceN. Tien-Binh, H. Vinh-Thang, X. Y. Chen, D. Rodriguea, S. Kaliaguine, J. Mater. Chem. A 2015, 3, 15202 â 15213;
dc.identifier.citedreferenceE. Ahmadiâ Feijani, T. Tavasoli, H. Mahdavi, Ind. Eng. Chem. Res. 2015, 54, 12124 â 12134.
dc.identifier.citedreferenceK. A. McDonald, J. I. Feldblyum, K. Koh, A. G. Wong-Foy, A. J. Matzger, Chem. Commun. 2015, 51, 11994 â 11996.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.