Show simple item record

Growth Arrest‐Specific 6 (GAS6) Promotes Prostate Cancer Survival by G1 Arrest/S Phase Delay and Inhibition of Apoptosis During Chemotherapy in Bone Marrow

dc.contributor.authorLee, Eunsohl
dc.contributor.authorDecker, Ann M.
dc.contributor.authorCackowski, Frank C.
dc.contributor.authorKana, Lulia A.
dc.contributor.authorYumoto, Kenji
dc.contributor.authorJung, Younghun
dc.contributor.authorWang, Jingcheng
dc.contributor.authorButtitta, Laura
dc.contributor.authorMorgan, Todd M.
dc.contributor.authorTaichman, Russell S.
dc.date.accessioned2016-11-18T21:22:47Z
dc.date.available2018-02-01T14:56:11Zen
dc.date.issued2016-12
dc.identifier.citationLee, Eunsohl; Decker, Ann M.; Cackowski, Frank C.; Kana, Lulia A.; Yumoto, Kenji; Jung, Younghun; Wang, Jingcheng; Buttitta, Laura; Morgan, Todd M.; Taichman, Russell S. (2016). "Growth Arrest‐Specific 6 (GAS6) Promotes Prostate Cancer Survival by G1 Arrest/S Phase Delay and Inhibition of Apoptosis During Chemotherapy in Bone Marrow." Journal of Cellular Biochemistry 117(12): 2815-2824.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/134410
dc.description.abstractProstate cancer (PCa) is known to develop resistance to chemotherapy. Growth arrest‐specific 6 (GAS6), plays a role in tumor progression by regulating growth in many cancers. Here, we explored how GAS6 regulates the cell cycle and apoptosis of PCa cells in response to chemotherapy. We found that GAS6 is sufficient to significantly increase the fraction of cells in G1 and the duration of phase in PCa cells. Importantly, the effect of GAS6 on G1 is potentiated during docetaxel chemotherapy. GAS6 altered the levels of several key cell cycle regulators, including the downregulation of Cyclin B1 (G2/M phase), CDC25A, Cyclin E1, and CDK2 (S phase entry), while the upregulation of cell cycle inhibitors p27 and p21, Cyclin D1, and CDK4. Importantly, these changes became further accentuated during docetaxel treatment in the presence of GAS6. Moreover, GAS6 alters the apoptotic response of PCa cells during docetaxel chemotherapy. Docetaxel induced PCa cell apoptosis is efficiently suppressed in PCa cell culture in the presence of GAS6 or GAS6 secreted from co‐cultured osteoblasts. Similarly, the GAS6‐expressing bone environment protects PCa cells from apoptosis within primary tumors in vivo studies. Docetaxel induced significant levels of Caspase‐3 and PARP cleavage in PCa cells, while GAS6 protected PCa cells from docetaxel‐induced apoptotic signaling. Together, these data suggest that GAS6, expressed by osteoblasts in the bone marrow, plays a significant role in the regulation of PCa cell survival during chemotherapy, which will have important implications for targeting metastatic disease. J. Cell. Biochem. 117: 2815–2824, 2016. © 2016 Wiley Periodicals, Inc.We explored how GAS6, expressed by osteoblasts, regulates the cell cycle and apoptosis in PCa cells during chemotherapy in the bone marrow. We demonstrate that GAS6 significantly increases the number of G1 arrested cells by altering signaling networks associated with G1 arrest and S phase delay. Our results suggest that GAS6 contributes to the regulation of PCa cell survival during chemotherapy in the bone marrow microenvironment.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPROSTATE CANCER
dc.subject.otherDOCETAXEL
dc.subject.otherG1 ARREST/S PHASE DELAY
dc.subject.otherAPOPTOTIC PATHWAY
dc.subject.otherBONE MARROW
dc.subject.otherGAS6
dc.titleGrowth Arrest‐Specific 6 (GAS6) Promotes Prostate Cancer Survival by G1 Arrest/S Phase Delay and Inhibition of Apoptosis During Chemotherapy in Bone Marrow
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134410/1/jcb25582_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134410/2/jcb25582.pdf
dc.identifier.doi10.1002/jcb.25582
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceRoberts WB, Han M. 2009. Clinical significance and treatment of biochemical recurrence after definitive therapy for localized prostate cancer. Surg Oncol 18 ( 3 ): 268 – 274.
dc.identifier.citedreferenceJung Y, Wang J, Lee E, McGee S, Berry JE, Yumoto K, Dai J, Keller ET, Shiozawa Y, Taichman RS. 2015. Annexin 2‐CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res 13 ( 1 ): 197 – 207.
dc.identifier.citedreferenceJung Y, Shiozawa Y, Wang J, Patel LR, Havens AM, Song J, Krebsbach PH, Roodman GD, Taichman RS. 2011. Annexin‐2 is a regulator of stromal cell‐derived factor‐/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol 39 ( 2 ): 151 – 166.
dc.identifier.citedreferenceKawamata N, Morosetti R, Miller CW, Park D, Spirin KS, Nakamaki T, Takeuchi S, Hatta Y, Simpson J, Wilcyznski S. 1995. Molecular analysis of the cyclin‐dependent kinase inhibitor gene p27/Kip1 in human malignancies. Cancer Res 55: 2266 – 2269.
dc.identifier.citedreferenceKim JK, Jung Y, Wang J, Joseph J, Mishra A, Hill EE, Krebsbach PH, Pienta KJ, Shiozawa Y, Taichman RS. 2013. TBK1 regulates prostate cancer dormancy through mTOR inhibition. Neoplasia 15 ( 9 ): 1064 – 1074.
dc.identifier.citedreferenceKoutsilieris M. 1993. Osteoblastic metastasis in advanced prostate cancer. Anticancer Res 13 ( 2 ): 443 – 449.
dc.identifier.citedreferenceKucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska‐Wieczorek A, Ratajczak J, Ratajczak MZ. 2005. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF‐1‐CXCR4 axis. Stem Cells 23: 879 – 894.
dc.identifier.citedreferenceLavecchia A, Di Giovanni C, Novellino E. 2009. CDC25A and B dual‐specificity phosphatase inhibitors: Potential agents for cancer therapy. Curr Med Chem 16 ( 15 ): 1831 – 1849.
dc.identifier.citedreferenceLi Y, Li X, Hussain M, Sarkar FH. 2004. Regulation of microtubule, apoptosis, and cell cycle‐related genes by taxotere in prostate cancer cells analyzed by microarray. Neoplasia 6 ( 2 ): 158 – 167.
dc.identifier.citedreferenceMahon KL, Lin HM, Castillo L, Lee BY, Lee‐Ng M, Chatfield MD, Chiam K, Breit SN, Brown DA, Molloy MP, Marx GM, Pavlakis N, Boyer MJ, Stockler MR, Daly RJ, Henshall SM, Horvath LG. 2015. Cytokine profiling of docetaxel‐resistant castration‐resistant prostate cancer. Br J Cancer 112 ( 8 ): 1340 – 1348.
dc.identifier.citedreferenceMarcelli M, Cunningham GR, Walkup M, He Z, Sturgis L, Kagan C, Mannucci R, Nicoletti I, Teng B, Denner L. 1999. Signaling pathway activated during apoptosis of the prostate cancer cell line LNCaP: Overexpression of Caspase‐7 as a new gene therapy strategy for prostate cancer. Cancer Res 59 ( 2 ): 382 – 390.
dc.identifier.citedreferenceMorgan TM, Lange PH, Porter MP, Lin DW, Ellis WJ, Gallaher IS, Vessella RL. 2009. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of diseasepredicts biochemical recurrence. Clin Cancer Res 15 ( 2 ): 677 – 683.
dc.identifier.citedreferenceMuenchen HJ, Poncza PJ, Pienta KJ. 2001. Different docetaxel‐induced apoptotic pathways are present in prostate cancer cell lines LNCaP and PC‐3. Urology 57: 366 – 370.
dc.identifier.citedreferenceNilsson I, Hoffmann I. 2000. Cell cycle regulation by the CDC25 phosphatase family. Prog Cell Cycle Res 4: 107 – 114.
dc.identifier.citedreferencePetrioli R, Pozzessere D, Messinese S, Sabatino M, Di Palma T, Marsili S, Correale P, Manganelli A, Salvestrini F, Francini G. 2003. Weekly low‐dose docetaxel in advanced hormone‐resistant prostate cancer patients previously exposed to chemotherapy. Oncology 64: 300 – 305.
dc.identifier.citedreferencePienta KJ, Esper PS. 1993. Risk factors for prostate cancer. Ann Intern Med 118 ( 10 ): 793 – 803.
dc.identifier.citedreferencePoggioli GJ, Dermody TS, Tyler KL. 2001. Reovirus‐induced sigma1s‐dependent G(2)/M phase cell cycle arrest is associated with inhibition of p34(cdc2). J Virol 75: 7429 – 7434.
dc.identifier.citedreferencePuhr M, Hoefer J, Neuwirt H, Eder IE, Kern J, Schäfer G, Geley S, Heidegger I, Klocker H, Culig Z. 2014. PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells. Oncotarget 5 ( 23 ): 12043 – 12056.
dc.identifier.citedreferenceQian DZ, Rademacher BL, Pittsenbarger J, Huang CY, Myrthue A, Higano CS, Garzotto M, Nelson PS, Beer TM. 2010. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel‐induced cytotoxicity. Prostate 70: 433 – 442.
dc.identifier.citedreferenceQuesnel B. 2008. Dormant tumor cells as a therapeutic target ? Cancer Lett 267: 10 – 17.
dc.identifier.citedreferenceRoy S, Singh RP, Agarwal C, Siriwardana S, Sclafani R, Agarwal R. 2008. Downregulation of both p21/Cip1 and p27/Kip1 produces a more aggressive prostate cancer phenotype. Cell Cycle 7 ( 12 ): 1828 – 1835.
dc.identifier.citedreferenceSakaue‐Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A. 2008. Visualizing spatiotemporal dynamics of multicellular cell‐cycle progression. Cell 132 ( 3 ): 487 – 498.
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121 ( 4 ): 1298 – 1312.
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Patel LR, Ziegler AM, Havens AM, Jung Y, Wang J, Zalucha S, Loberg RD, Pienta KJ, Taichman RS. 2010. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12 ( 2 ): 116 – 127.
dc.identifier.citedreferenceSun YX, Schneider A, Jung Y, Wang J, Dai J, Wang J, Cook K, Osman NI, Koh‐Paige AJ, Shim H, Pienta KJ, Keller ET, McCauley LK, Taichman RS. 2005. Skeletal localization and neutralization of the SDF‐1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 20: 318 – 329.
dc.identifier.citedreferenceSweeney CJ, Chen YH, Carducci M, Liu G, Jarrard DF, Eisenberger M, Wong YN, Hahn N, Kohli M, Cooney MM, Dreicer R, Vogelzang NJ, Picus J, Shevrin D, Hussain M, Garcia JA, DiPaola RS. 2015. Chemohormonal therapy in metastatic hormone‐sensitive prostate cancer. N Engl J Med 373 ( 8 ): 737 – 746.
dc.identifier.citedreferenceTaichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. 2002. Use of the stromal cell‐derived factor‐1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62 ( 6 ): 1832 – 1837.
dc.identifier.citedreferenceTaichman RS, Loberg RD, Mehra R, Pienta KJ. 2007. The evolving biology and treatment of prostate cancer. J Clin Invest 117: 2351 – 2361.
dc.identifier.citedreferenceTinga HJ, Hsu J, Bao BY, Lee YF. 2007. Docetaxel‐induced growth inhibition and apoptosis in androgen independent prostate cancer cells are enhanced by 1a, 25‐dihydroxy vitamin D3. Cancer Lett 247: 122 – 129.
dc.identifier.citedreferenceWolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. 1997. Movement of bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139: 1281 – 1292.
dc.identifier.citedreferenceYoo GH, Piechocki MP, Ensley JF, Nguyen T, Oliver J, Meng H, Kewson D, Shibuya TY, Lonardo F, Tainsky MA. 2002. Docetaxel induced gene expression patterns in head and neck squamous cell carcinoma using cDNA microarray and PowerBlot. Clin Cancer Res 8: 3910 – 3921.
dc.identifier.citedreferenceYumoto K, Eber MR, Berry JE, Taichman RS, Shiozawa Y. 2014. Molecular pathways: Niches in metastatic dormancy. Clin Cancer Res 20 ( 13 ): 3384 – 3389.
dc.identifier.citedreferenceAmling CL, Blute ML, Bergstralh EJ, Seay TM, Slezak J, Zincke H. 2000. Long‐term hazard of progression after radical prostatectomy for clinically localized prostate cancer: Continued risk of biochemical failure after 5 years. J Urol 164 ( 1 ): 101 – 105.
dc.identifier.citedreferenceBhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J, McClellan S, Carter JE, Singh AP. 2014. CXCL12/CXCR4 signaling counteracts docetaxel‐induced microtubule stabilization via p21‐activated kinase 4‐dependent activation of LIM domain kinase 1. Oncotarget 5 ( 22 ): 11490 – 11500.
dc.identifier.citedreferenceBusino L, Chiesa M, Draetta GF, Donzelli M. 2004. CDC25A phosphatase: Combinatorial phosphorylation, ubiquitylation and proteolysis. Oncogene 23 ( 11 ): 2050 – 1056.
dc.identifier.citedreferenceChiu YT, Han HY, Leung SC, Yuen HF, Chau CW, Guo Z, Qiu Y, Chan KW, Wang X, Wong YC, Ling MT. 2009. CDC25A functions as a novel AR corepressor in prostate cancer cells. J Mol Biol 385 ( 2 ): 446 – 456.
dc.identifier.citedreferenceEL‐Deiry WS, Tokino T, Waldman T, Oliner JD, Velculescu VE, Burrell M, Hill DE, Healy E, Rees JL, Hamilton SR. 1995. Topological control of p21 WAF1 /CIP1 expression in normal and neoplastic tissues. Cancer Res 55: 2910 – 2919.
dc.identifier.citedreferenceErlanson M, Landberg G. 2001. Prognostic implications of p27 and cyclin E protein contents in malignant lymphomas. Leuk Lymphoma 40: 461 – 470.
dc.identifier.citedreferenceGoruppi S, Ruaro E, Varnum B, Schneider C. 1999. Gas6‐mediated survival in NIH3T3 cells activates stress signaling cascade and is independent of Ras. Oncogene 18 ( 29 ): 4224 – 4236.
dc.identifier.citedreferenceHaldar S, Basu A, Croce CM. 1997. Bcl2 is the guardian of microtubule integrity. Cancer Res 57: 229 – 233.
dc.identifier.citedreferenceHong WK. 2002. The current status of docetaxel in solid tumors. An M. D. Anderson Cancer Center review. Oncology (Huntington) 16: 9 – 15.
dc.identifier.citedreferenceJin Z, El‐Deiry WS. 2005. Overview of cell death signaling pathways. Cancer Biol Ther 4 ( 2 ): 147 – 171.
dc.identifier.citedreferenceJung Y, Kim JK, Shiozawa Y, Wang J, Mishra A, Joseph J, Berry JE, McGee S, Lee E, Sun H, Wang J, Jin T, Zhang H, Dai J, Krebsbach PH, Keller ET, Pienta KJ, Taichman RS. 2013. Recruitment of mesenchymal stem cells into prostate tumors promotes metastasis. Nat Commun 4: e1795.
dc.identifier.citedreferenceJung Y, Shiozawa Y, Wang J, McGregor N, Dai J, Park SI, Berry JE, Havens AM, Joseph J, Kim JK, Patel L, Carmeliet P, Daignault S, Keller ET, McCauley LK, Pienta KJ, Taichman RS. 2012. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia 14 ( 5 ): 429 – 439.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.