Show simple item record

Concise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient‐Derived Induced Pluripotent Stem Cells

dc.contributor.authorTidball, Andrew M.
dc.contributor.authorParent, Jack M.
dc.date.accessioned2016-11-18T21:22:54Z
dc.date.available2017-03-01T14:41:59Zen
dc.date.issued2016-01
dc.identifier.citationTidball, Andrew M.; Parent, Jack M. (2016). "Concise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient‐Derived Induced Pluripotent Stem Cells." STEM CELLS 34(1): 27-33.
dc.identifier.issn1066-5099
dc.identifier.issn1549-4918
dc.identifier.urihttps://hdl.handle.net/2027.42/134416
dc.description.abstractHuman induced pluripotent stem cell (iPSC) models of epilepsy are becoming a revolutionary platform for mechanistic studies and drug discovery. The skyrocketing pace of epilepsy gene discovery is vastly outstripping the development of in vivo animal models. Currently, antiepileptic drug prescribing to patients with specific genetic epilepsies is based on small‐scale clinical trials and empiricism; however, rapid production of patient‐derived iPSC models will allow for precision therapy. We review iPSC‐based studies that have already afforded novel discoveries in diseases with epileptic phenotypes, as well as challenges to using iPSC‐based neurological disease models. We also discuss iPSC‐derived cardiomyocyte studies of arrhythmia‐inducing ion channelopathies that exemplify novel drug discovery and use of multielectrode array technology that can be translated to epilepsy research. Beyond initial studies of Rett, Timothy, Phelan‐McDermid, and Dravet syndromes, the stage is set for groundbreaking iPSC‐based mechanistic and therapeutic discoveries in genetic epilepsies with the potential to impact patient treatment and quality of life. Stem Cells 2016;34:27–33
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPatient‐specific modeling
dc.subject.otherChannelopathies
dc.subject.otherDrug discovery
dc.subject.otherEpilepsy
dc.subject.otherHuman induced pluripotent stem cells
dc.titleConcise Review: Exciting Cells: Modeling Genetic Epilepsies with Patient‐Derived Induced Pluripotent Stem Cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134416/1/stem2203_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134416/2/stem2203.pdf
dc.identifier.doi10.1002/stem.2203
dc.identifier.sourceSTEM CELLS
dc.identifier.citedreferenceMoretti A, Bellin M, Welling A et al. Patient‐specific induced pluripotent stem‐cell models for long‐QT syndrome. N Engl J Med 2010; 363: 1397 – 1409.
dc.identifier.citedreferenceHigurashi N, Uchida T, Lossin C et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain 2013; 6: 19.
dc.identifier.citedreferenceJiao J, Yang Y, Shi Y et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet 2013; 22: 4241 – 4252.
dc.identifier.citedreferenceLiu Y, Lopez‐Santiago LF, Yuan Y et al. Dravet syndrome patient‐derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013; 74: 128 – 139.
dc.identifier.citedreferenceItzhaki I, Maizels L, Huber I et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011; 471: 225 – 229.
dc.identifier.citedreferenceDavis RP, Casini S, van den Berg CW et al. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 2012; 125: 3079 – 3091.
dc.identifier.citedreferenceHu B‐Y, Weick JP, Yu J et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 2010; 107: 4335 – 4340.
dc.identifier.citedreferenceKim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010; 467: 285 – 290.
dc.identifier.citedreferenceMüller F‐J, Schuldt BM, Williams R et al. A bioinformatic assay for pluripotency in human cells. Nat Methods 2011; 8: 315 – 317.
dc.identifier.citedreferenceSandoe J, Eggan K. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 2013; 16: 780 – 789.
dc.identifier.citedreferenceNicholas CR, Chen J, Tang Y et al. Functional maturation of hPSC‐derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 2013; 12: 573 – 586.
dc.identifier.citedreferenceTang X, Zhou L, Wagner AM et al. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res 2013; 11: 743 – 757.
dc.identifier.citedreferenceSukigara S, Dai H, Nabatame S et al. Expression of astrocyte‐related receptors in cortical dysplasia with intractable epilepsy. J Neuropathol Exp Neurol 2014; 73: 798 – 806.
dc.identifier.citedreferenceMoore AR, Filipovic R, Mo Z et al. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 2009; 19: 1795 – 1805.
dc.identifier.citedreferenceBardy C, van den Hurk M, Eames T et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci 2015: 201504393.
dc.identifier.citedreferenceWainger BJ, Kiskinis E, Mellin C et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient‐derived motor neurons. Cell Rep 2014; 7: 1 – 11.
dc.identifier.citedreferenceMcConnell ER, McClain MA, Ross J et al. Evaluation of multi‐well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology 2012; 33: 1048 – 1057.
dc.identifier.citedreferenceLancaster MA, Renner M, Martin C‐A et al. Cerebral organoids model human brain development and microcephaly. Nature 2013; 501: 373 – 379.
dc.identifier.citedreferenceEspuny‐Camacho I, Michelsen KA, Gall D et al. Pyramidal neurons derived from human pluripotent stem cells integrate efficiently into mouse brain circuits in vivo. Neuron 2013; 77: 440 – 456.
dc.identifier.citedreferenceCunningham M, Cho J‐H, Leung A et al. hPSC‐derived maturing GABAergic interneurons ameliorate seizures and abnormal behavior in epileptic mice. Cell Stem Cell 2014; 15: 559 – 573.
dc.identifier.citedreferenceDolce A, Ben‐Zeev B, Naidu S et al. Rett syndrome and epilepsy: An update for child neurologists. Pediatr Neurol 2013; 48: 337 – 345.
dc.identifier.citedreferenceMarchetto MC, Carromeu C, Acab A et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527 – 539.
dc.identifier.citedreferenceCheung AY, Horvath LM, Grafodatskaya D et al. Isolation of MECP2‐null Rett Syndrome patient hiPS cells and isogenic controls through X‐chromosome inactivation. Hum Mol Genet 2011; 20: 2103 – 2115.
dc.identifier.citedreferenceTakahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861 – 872.
dc.identifier.citedreferenceMarchetto MC, Winner B, Gage FH. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 2010; 19: R71 – R76.
dc.identifier.citedreferenceOkita K, Yamakawa T, Matsumura Y et al. An efficient nonviral method to generate integration‐free human‐induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 2013; 31: 458 – 466.
dc.identifier.citedreferenceNishimura K, Sano M, Ohtaka M et al. Development of defective and persistent Sendai virus vector a unique gene delivery/expression system ideal for cell reprogramming. J Biol Chem 2011; 286: 4760 – 4771.
dc.identifier.citedreferenceOkita K, Matsumura Y, Sato Y et al. A more efficient method to generate integration‐free human iPS cells. Nat Methods 2011; 8: 409 – 412.
dc.identifier.citedreferenceMarion RM, Strati K, Li H et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 2009; 4: 141 – 154.
dc.identifier.citedreferenceSrikanth P, Young‐Pearse TL. Stem cells on the brain: Modeling neurodevelopmental and neurodegenerative diseases using human induced pluripotent stem cells. J Neurogenet 2014; 28: 5 – 29.
dc.identifier.citedreferenceRan FA, Hsu PD, Lin C‐Y et al. Double nicking by RNA‐guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154: 1380 – 1389.
dc.identifier.citedreferenceSchwank G, Koo B‐K, Sasselli V et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013; 13: 653 – 658.
dc.identifier.citedreferenceMiyaoka Y, Chan AH, Judge LM et al. Isolation of single‐base genome‐edited human iPS cells without antibiotic selection. Nat Methods 2014; 11: 291 – 293.
dc.identifier.citedreferenceHirtz D, Thurman D, Gwinn‐Hardy K et al. How common are the “common” neurologic disorders? Neurology 2007; 68: 326 – 337.
dc.identifier.citedreferenceOlafsson E, Ludvigsson P, Hesdorffer D et al. Incidence of unprovoked seizures and epilepsy in Iceland and assessment of the epilepsy syndrome classification: A prospective study. Lancet Neurol 2005; 4: 627 – 634.
dc.identifier.citedreferenceThurman DJ, Hesdorffer DC, French JA. Sudden unexpected death in epilepsy: Assessing the public health burden. Epilepsia 2014; 55: 1479 – 1485.
dc.identifier.citedreferenceShoffner JM, Lott MT, Lezza AM et al. Myoclonic epilepsy and ragged‐red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA Lys mutation. Cell 1990; 61: 931 – 937.
dc.identifier.citedreferenceNoebels J. Pathway‐driven discovery of epilepsy genes. Nat Neurosci 2015; 18: 344 – 350.
dc.identifier.citedreferenceChiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia 2011; 52: 72 – 75.
dc.identifier.citedreferenceCarvill GL, Heavin SB, Yendle SC et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45: 825 – 830.
dc.identifier.citedreferenceO’Brien JE, Meisler MH. Sodium channel SCN8A (Nav1. 6): Properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4.
dc.identifier.citedreferencePhenome E, Consortium EK. De novo mutations in epileptic encephalopathies. Nature 2013; 501: 217 – 221.
dc.identifier.citedreferenceFujiwara T, Sugawara T, Mazaki‐Miyazaki E et al. Mutations of sodium channel α subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic–clonic seizures. Brain 2003; 126: 531 – 546.
dc.identifier.citedreferenceMeng H, Xu HQ, Yu L et al. The SCN1A mutation database: Updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 2015; 36: 573 – 580.
dc.identifier.citedreferenceZeng H, Shen EH, Hohmann JG et al. Large‐scale cellular‐resolution gene profiling in human neocortex reveals species‐specific molecular signatures. Cell 2012; 149: 483 – 496.
dc.identifier.citedreferenceMaezawa I, Swanberg S, Harvey D et al. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009; 29: 5051 – 5061.
dc.identifier.citedreferenceRicciardi S, Ungaro F, Hambrock M et al. CDKL5 ensures excitatory synapse stability by reinforcing NGL‐1–PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC‐derived neurons. Nat Cell Biol 2012; 14: 911 – 923.
dc.identifier.citedreferenceLivide G, Patriarchi T, Amenduni M et al. GluD1 is a common altered player in neuronal differentiation from both MECP2‐mutated and CDKL5‐mutated iPS cells. Eur J Hum Genet 2015; 23: 195 – 201.
dc.identifier.citedreferenceDhar S, Del Gaudio D, German J et al. 22q13. 3 deletion syndrome: Clinical and molecular analysis using array CGH. Am J Med Genet Part A 2010; 152: 573 – 581.
dc.identifier.citedreferenceShcheglovitov A, Shcheglovitova O, Yazawa M et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Nature 2013; 503: 267 – 271.
dc.identifier.citedreferenceBerry‐Kravis E, Potanos K. Psychopharmacology in fragile X syndrome—Present and future. Ment Retard Dev Disabil Res Rev 2004; 10: 42 – 48.
dc.identifier.citedreferenceLiu J, Kościelska KA, Cao Z et al. Signaling defects in iPSC‐derived fragile X premutation neurons. Hum Mol Genet 2012: dds207.
dc.identifier.citedreferenceHalevy T, Czech C, Benvenisty N. Molecular mechanisms regulating the defects in fragile X syndrome neurons derived from human pluripotent stem cells. Stem Cell Rep 2015; 4: 37 – 46.
dc.identifier.citedreferenceYazawa M, Hsueh B, Jia X et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011; 471: 230 – 234.
dc.identifier.citedreferencePaşca SP, Portmann T, Voineagu I et al. Using iPSC‐derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 2011; 17: 1657 – 1662.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.