Show simple item record

Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients

dc.contributor.authorVizcaíno‐palomar, Natalia
dc.contributor.authorIbáñez, Inés
dc.contributor.authorGonzález‐martínez, Santiago C.
dc.contributor.authorZavala, Miguel A.
dc.contributor.authorAlía, Ricardo
dc.date.accessioned2016-11-18T21:23:04Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11
dc.identifier.citationVizcaíno‐palomar, Natalia ; Ibáñez, Inés ; González‐martínez, Santiago C. ; Zavala, Miguel A.; Alía, Ricardo (2016). "Adaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients." Ecology and Evolution (21): 7561-7573.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/134424
dc.description.abstractPlant species aboveground allometry can be viewed as a functional trait that reflects the evolutionary tradeâ off between aboveâ and belowground resources. In forest trees, allometry is related to productivity and resilience in different environments, and it is tightly connected with a compromise between efficiencyâ safety and competitive ability. A better understanding on how this trait varies within and across species is critical to determine the potential of a species/population to perform along environmental gradients. We followed a hierarchical framework to assess tree heightâ diameter allometry variation within and across four common European Pinus species. Tree heightâ diameter allometry variation was a function of solely genetic components â approximated by either population effects or clinal geographic responses of the population’s site of originâ and differential genetic plastic responses â approximated by the interaction between populations and two climatic variables of the growing sites (temperature and precipitation)â . Our results suggest that, at the species level, climate of the growing sites set the tree heightâ diameter allometry of xeric and mesic species (Pinus halepensis, P. pinaster and P. nigra) apart from the boreal species (P. sylvestris), suggesting a weak signal of their phylogenies in the tree heightâ diameter allometry variation. Moreover, accounting for interpopulation variability within species for the four pine species aided to: (1) detect genetic differences among populations in allometry variation, which in P. nigra and P. pinaster were linked to gene pools â genetic diversity measurementsâ ; (2) reveal the presence of differential genetic variation in plastic responses along two climatic gradients in tree allometry variation. In P. sylvestris and P. nigra, genetic variation was the result of adaptive patterns to climate, while in P. pinaster and P. halepensis, this signal was either weaker or absent, respectively; and (3) detect local adaptation in the exponent of the tree heightâ diameter allometry relationship in two of the four species (P. sylvestris and P. nigra), as it was a function of populations’ latitude and altitude variables. Our findings suggest that the four species have been subjected to different historical and climatic constraints that might have driven their aboveground allometry and promoted different life strategies.We address the fate of four pine species to face, or already facing, a climate change context by accounting the intraspecific variation held within species. However, instead of using single traits, the novelty of the study lies in the use of a composite trait, specifically the aboveground allometry relationship, offering a more complete understanding of the species’s performance.
dc.publisherPrinceton University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherintraspecies variability
dc.subject.otherprovenance tests
dc.subject.otherBayesian modeling
dc.subject.otherclimatic and geographical clines
dc.subject.otherenvironmental gradients
dc.subject.otherfunctional trait
dc.subject.otherIberian Peninsula
dc.titleAdaptation and plasticity in aboveground allometry variation of four pine species along environmental gradients
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134424/1/ece32153_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134424/2/ece32153.pdf
dc.identifier.doi10.1002/ece3.2153
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferenceRodríguezâ González, P. M., J. C. Stella, F. Campelo, M. T. Ferreira, and A. Albuquerque. 2010. Subsidy or stress? and Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. For. Ecol. Manage. 259: 2015 â 2025.
dc.identifier.citedreferenceMéndezâ Alonzo, R., J. Lópezâ Portillo, and V. H. Riveraâ Monroy. 2008. Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the Central Region of the Gulf of Mexico. Biotropica 40: 449 â 456.
dc.identifier.citedreferenceMoles, A. T., D. I. Warton, L. Warman, N. G. Swenson, S. W. Laffan, A. E. Zanne, et al. 2009. Global patterns in plant height. J. Ecol. 97: 923 â 932.
dc.identifier.citedreferenceNiklas, K. J. 1993. The scaling of plant height: a comparison among major plant clades and anatomical grades. Ann. Bot. 72: 165 â 172.
dc.identifier.citedreferenceO’Neill, G. A., and G. Nigh. 2011. Linking population genetics and tree height growth models to predict impacts of climate change on forest production. Glob. Change Biol. 17: 3208 â 3217.
dc.identifier.citedreferencePoorter, L., E. Lianes, M. Morenoâ de las Heras, and M. A. Zavala. 2012. Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecol., 213: 707 â 722.
dc.identifier.citedreferencePretzsch, H., and J. Dieler. 2012. Evidence of variant intraâ and interspecific scaling of tree crown structure and relevance for allometric theory. Oecologia 169: 637 â 649.
dc.identifier.citedreferenceReich, P. B., and J. Oleksyn. 2008. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 11: 588 â 597.
dc.identifier.citedreferenceRichardson, D. M. 1998. Ecology and biogeography of pinus. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceRobledoâ Arnuncio, J. J., C. Collada, R. Alía, and L. Gil. 2005. Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial area. J. Biogeogr. 32: 595 â 605.
dc.identifier.citedreferenceRuizâ Benito, P., E. R. Lines, L. Gómezâ Aparicio, M. A. Zavala, and D. A. Coomes. 2013. Patterns and drivers of tree mortality in Iberian forests: climatic effects are modified by competition. PLoS ONE 8: e56843.
dc.identifier.citedreferenceRyan, M. G., and B. J. Yoder. 1997. Hydraulic limits to tree height and tree growth. Bioscience 47: 235 â 242.
dc.identifier.citedreferenceSoto, A., J. J. Robledoâ Arnuncio, S. C. Gonzálezâ Martínez, P. E. Smouse, and R. Alía. 2010. Climatic niche and neutral genetic diversity of the six Iberian pine species: a retrospective and prospective view. Mol. Ecol. 19: 1396 â 1409.
dc.identifier.citedreferenceSpiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian measures of model complexity and fit. J. R. Stat. Soc. Series B 64: 583 â 640.
dc.identifier.citedreferenceTapias, R., J. A. Pardos, L. Gil, and J. Climent. 2004. Life histories of Mediterranean pines. Plant Ecol. 171: 53 â 68.
dc.identifier.citedreferenceThomas, A., R. O’Hara, U. Ligges, and S. Sturts. 2006. Making BUGS Open. R. News 6: 12 â 17.
dc.identifier.citedreferenceThompson, J. 2005. Plant Evolution in the Mediterranean. Oxford University Press, Oxford, UK.
dc.identifier.citedreferenceTilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton, New Jersey.
dc.identifier.citedreferenceTyree, M., and M. Zimmermann. 2002. Xylem structure and the ascent of sap. Springerâ Verlag, Berlin.
dc.identifier.citedreferenceValladares, F., S. Matesanz, F. Guilhaumon, M. B. Araújo, L. Balaguer, M. Benitoâ Garzón, et al. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17: 1351 â 1364.
dc.identifier.citedreferenceVieilledent, G., B. Courbaud, G. Kunstler, J.â F. Dhôte, and J. S. Clark. 2010. Individual variability in tree allometry determines light resource allocation in forest ecosystems: a hierarchical Bayesian approach. Oecologia 163: 759 â 773.
dc.identifier.citedreferenceWang, X., J. Fang, Z. Tang, and B. Zhu. 2006. Climatic control of primary forest structure and DBHâ height allometry in Northeast China. For. Ecol. Manage. 234: 264 â 274.
dc.identifier.citedreferenceWay, D. A., and R. Oren. 2010. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30: 669 â 688.
dc.identifier.citedreferenceWright, S. D., and K. D. M. Mcconnaughay. 2002. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Spec. Biol. 17: 119 â 131.
dc.identifier.citedreferenceYastrebov, B. 1996. Different types of heterogeneity and plant competition in monospecific stands. Oikos 75: 89 â 97.
dc.identifier.citedreferenceZuccarini, P., E. Farieri, R. Vásquez, B. Grau, and R. S. Monserrat. 2015. Effects of soil water temperature on root hydraulic resistance of six species of Iberian pines. Plant Biosyst. 149: 1 â 8.
dc.identifier.citedreferenceMäkelä, A., and H. T. Valentine. 2006. Crown ratio influences allometric scaling in trees. Ecology 87: 2967 â 2972.
dc.identifier.citedreferenceAfzalâ Rafii, Z., and R. S. Dodd. 2007. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine ( Pinus nigra ) in western Europe. Mol. Ecol. 16: 723 â 736.
dc.identifier.citedreferenceAiba, S. I., and T. Kohyama. 1996. Tree species stratification in relation to allometry and demography in a warmâ temperate rain forest. J. Ecol. 84: 207 â 218.
dc.identifier.citedreferenceAlberto, F. J., S. N. Aitken, R. Alía, S. C. Gonzálezâ Martínez, H. Hanninen, A. Kremer, et al. 2013. Potential for evolutionary responses to climate change â evidence from tree populations. Glob. Change Biol. 19: 1645 â 1661.
dc.identifier.citedreferenceAlía, R., J. Moro, and J. B. Denis. 2001. Ensayos de procedencias de Pinus pinaster Ait. en el centro de España: resultados a la edad de 32 años. Investigación Agraria. Sistemas y Recursos Forestales 10: 333 â 354.
dc.identifier.citedreferenceBanin, L., T. R. Feldpausch, O. L. Phillips, T. R. Baker, J. Lloyd, K. Affumâ Baffoe, et al. 2012. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21: 1179 â 1190.
dc.identifier.citedreferenceBenitoâ Garzón, M., R. Alía, T. M. Robson, and M. A. Zavala. 2011. Intraâ specific variability and plasticity influence potential tree species distributions under climate change. Glob. Ecol. Biogeogr. 20: 766 â 778.
dc.identifier.citedreferenceBucci, G., S. C. Gonzálezâ Martínez, G. Le Provost, C. Plomion, M. M. Ribeiro, F. Sebastiani, et al. 2007. Rangeâ wide phylogeography and gene zones in Pinus pinaster Ait. revealed by chloroplast microsatellite markers. Mol. Ecol. 16: 2137 â 2153.
dc.identifier.citedreferenceBullock, S. H. 2000. Developmental patterns of tree dimensions in a neotropical deciduous forest. Biotropica 32: 42 â 52.
dc.identifier.citedreferenceChave, J., C. Andalo, S. Brown, M. A. Cairns, J. Q. Chambers, D. Eamus, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145: 87 â 99.
dc.identifier.citedreferenceClark, J. S. 2005. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8: 2 â 14.
dc.identifier.citedreferenceClark, J. 2007. Models for Ecological data. Princeton University Press, Princeton, NJ.
dc.identifier.citedreferenceDietze, M. C., M. S. Wolosin, and J. S. Clark. 2008. Capturing diversity and interspecific variability in allometries: a hierarchical approach. For. Ecol. Manage. 256: 1939 â 1948.
dc.identifier.citedreferenceGarcía Esteban, L., J. A. Martín, P. Palacios, F. García Fernández, and R. López. 2009. Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees 24: 19 â 30.
dc.identifier.citedreferenceGelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceGómezâ Aparicio, L., R. Garcíaâ Valdés, P. Ruizâ Benito, and M. A. Zavala. 2011. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob. Change Biol. 17: 2400 â 2414.
dc.identifier.citedreferenceGonzaloâ Jiménez, J. 2010. Diagnosis Fitoclimática de La España Peninsular Hacia Un Modelo de Clasificación Funcional de La Vegetación Y de Los Ecosistemas Peninsulares Españoles. Organismo Autónomo Parques Nacionales, Ministerio de Medio Ambiente y Medio Rural y Marino. Madrid, España.
dc.identifier.citedreferenceGrivet, D., F. Sebastiani, S. C. Gonzálezâ Martínez, and G. G. Vendramin. 2009. Patterns of polymorphism resulting from longâ range colonization in the Mediterranean conifer Aleppo pine. New Phytol. 184: 1016 â 1028.
dc.identifier.citedreferenceHallé, F., R. A. A. Oldeman, and P. B. Tomlinson. 1978. Tropical trees and forests: an architectural analysis. Springerâ Verlag, Berlin, Heidelberg.
dc.identifier.citedreferenceJaramilloâ Correa, J. P., I. Rodríguezâ Quilón, D. Grivet, C. Lepoittevin, F. Sebastiani, M. Heuertz, et al. 2015. Molecular proxies for climate maladaptation in a longâ lived tree ( Pinus pinaster Aiton, Pinaceae). Genetics 199: 793 â 807.
dc.identifier.citedreferenceKing, D. A. 1996. Allometry and life history of tropical trees. J. Trop. Ecol. 12: 25.
dc.identifier.citedreferenceKing, D. A., S. J. Davies, S. Tan, and N. S. M. Noor. 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. J. Ecol. 94: 670 â 680.
dc.identifier.citedreferenceLeites, L. P., A. P. Robinson, G. E. Rehfeldt, J. D. Marshall, and N. L. Crookston. 2012. Heightâ growth response to climatic changes differs among populations of Douglasâ fir: a novel analysis of historic data. Ecol. Appl. 22: 154 â 165.
dc.identifier.citedreferenceLines, E. R., M. A. Zavala, D. W. Purves, and D. A. Coomes. 2012. Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Glob. Ecol. Biogeogr. 21: 1017 â 1028.
dc.identifier.citedreferenceLópezâ Serrano, F., A. Garcíaâ Morote, M. Andrésâ Abellán, A. Tendero, and A. Delcerro. 2005. Site and weather effects in allometries: a simple approach to climate change effect on pines. For. Ecol. Manage. 215: 251 â 270.
dc.identifier.citedreferenceMatyas, C. 1996. Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92: 45 â 54.
dc.identifier.citedreferenceMcMahon, T. 1973. Size and shape in biology. Science 179: 1201 â 1204.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.