Show simple item record

Modern precipitation δ18O and trajectory analysis over the Himalaya‐Tibet Orogen from ECHAM5‐wiso simulations

dc.contributor.authorLi, Jingmin
dc.contributor.authorEhlers, Todd A.
dc.contributor.authorMutz, Sebastian G.
dc.contributor.authorSteger, Christian
dc.contributor.authorPaeth, Heiko
dc.contributor.authorWerner, Martin
dc.contributor.authorPoulsen, Christopher J.
dc.contributor.authorFeng, Ran
dc.date.accessioned2016-11-18T21:23:15Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09-27
dc.identifier.citationLi, Jingmin; Ehlers, Todd A.; Mutz, Sebastian G.; Steger, Christian; Paeth, Heiko; Werner, Martin; Poulsen, Christopher J.; Feng, Ran (2016). "Modern precipitation δ18O and trajectory analysis over the Himalaya‐Tibet Orogen from ECHAM5‐wiso simulations." Journal of Geophysical Research: Atmospheres 121(18): 10,432-10,452.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/134432
dc.description.abstractVariations in oxygen isotope ratios (δ18O) measured from modern precipitation and geologic archives provide a promising tool for understanding modern and past climate dynamics and tracking elevation changes over geologic time. In areas of extreme topography, such as the Tibetan Plateau, the interpretation of δ18O has proven challenging. This study investigates the climate controls on temporal (daily and 6 h intervals) and spatial variations in present‐day precipitation δ18O (δ18Op) across the Tibetan Plateau using a 30 year record produced from the European Centre/Hamburg ECHAM5‐wiso global atmospheric general circulation model (GCM). Results indicate spatial and temporal agreement between model‐predicted δ18Op and observations. Large daily δ18Op variations of −25 to +5‰ occur over the Tibetan Plateau throughout the 30 simulation years, along with interannual δ18Op variations of ~2‰. Analysis of extreme daily δ18Op indicates that extreme low values coincide with extreme highs in precipitation amount. During the summer, monsoon vapor transport from the north and southwest of the plateau generally corresponds with high δ18Op, whereas vapor transport from the Indian Ocean corresponds with average to low δ18Op. Thus, vapor source variations are one important cause of the spatial‐temporal differences in δ18Op. Comparison of GCM and Rayleigh Distillation Model (RDM)‐predicted δ18Op indicates a modest agreement for the Himalaya region (averaged over 86°–94°E), confirming application of the simpler RDM approach for estimating δ18Op lapse rates across Himalaya.Key PointsPrecipitation δ18O over the Tibetan Plateau is simulated with a global climate modelPredicted precipitation δ18O over Tibet agrees with sparsely available observationsExtreme events analysis explains spatial and temporal variations in δ18O
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRayleigh distillation
dc.subject.otherprecipitation δ18O
dc.subject.otherECHAM5‐wiso
dc.subject.otherTibet
dc.subject.otherHimalaya
dc.subject.othertrajectory analysis
dc.titleModern precipitation δ18O and trajectory analysis over the Himalaya‐Tibet Orogen from ECHAM5‐wiso simulations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134432/1/jgrd53260.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134432/2/jgrd53260_am.pdf
dc.identifier.doi10.1002/2016JD024818
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRoeckner, E., et al. ( 2003 ), The atmospheric general circulation model ECHAM5. Part I: Model description. Rep. 349 Rep., 127 pp, Max Planck Institute for Meteorology, Hamburg.
dc.identifier.citedreferenceHren, M. T., B. Bookhagen, P. M. Blisniuk, A. L. Booth, and C. P. Chamberlain ( 2009 ), Delta O‐18 and delta D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions, Earth and Planet. Sci. Lett., 288 ( 1‐2 ), 20 – 32.
dc.identifier.citedreferenceInsel, N., C. J. Poulsen, T. A. Ehlers, and C. Sturm ( 2012 ), Response of meteoric δ 18 O to surface uplift—Implications for Cenozoic Andean Plateau growth, Earth Planet. Sci. Lett., 317, 262 – 272.
dc.identifier.citedreferenceInsel, N., C. J. Poulsen, C. Sturm, and T. A. Ehlers ( 2013 ), Climate controls on Andean precipitation δ 18 O interannual variability, J. Geophys. Res. Atmos., 118, 9721 – 9742, doi: 10.1002/jgrd.50619.
dc.identifier.citedreferenceJeffery, M. L., C. J. Poulsen, and T. A. Ehlers ( 2012 ), Impacts of global cooling, surface uplift and an inland seaway on South American paleoclimate and precipitation δ 18 O, Geol. Soc. Am. Bull., 124, 335 – 351.
dc.identifier.citedreferenceJouzel, J., G. Hoffmann, R. D. Koster, and V. Masson ( 2000 ), Water isotopes in precipitation: Data/model comparison for present‐day and past climates, Quat. Sci. Rev., 19, 363 – 379.
dc.identifier.citedreferenceLangebroek, P. M., M. Werner, and G. Lohmann ( 2011 ), Climate information imprinted in oxygen‐isotopic composition of precipitation in Europe, Earth Planet. Sci. Lett., 311 ( 1‐2 ), 144 – 154.
dc.identifier.citedreferenceLiu, Z. F., L. D. Tian, T. D. Yao, and W. S. Yu ( 2010 ), Characterization of precipitation delta O‐18 variation in Nagqu, central Tibetan Plateau and its climatic controls, Theor. Appl. Climatol., 99 ( 1‐2 ), 95 – 104.
dc.identifier.citedreferenceMa, D., W. R. Boos, and Z. Kuang ( 2014 ), Effects of orography and surface heat fluxes on the South Asian summer monsoon, J. Clim., 27, 6647 – 6659.
dc.identifier.citedreferenceMajoube, M. ( 1971 ), Fractionnement en oxygen 18 et en deuterium entre l’eau et sa vapeur, J. Chim. Phys., 68 ( 10 ), 1423 – 1436.
dc.identifier.citedreferenceNakicenovic, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, and K. Gregory ( 2000 ), Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York.
dc.identifier.citedreferenceMutz, S. G., T. A. Ehlers, J. Li, C. Steger, H. Paeth, M. Werner, and C. J. Poulsen ( 2016 ), Precipitation δ 18 O over the Himalaya‐Tibet Orogen from ECHAM5‐wiso simulations: Statistical analysis of temperature, topography, and precipitation, J. Geophys. Res. Atmos., doi: 10.1002/2016JD024856.
dc.identifier.citedreferencePoulsen, C. J., T. A. Ehlers, and N. Insel ( 2010 ), Onset of convective rainfall during gradual Late Miocene rise of the Central Andes, Science, 328, 490 – 493.
dc.identifier.citedreferenceRoe, G. H., Q. Ding, D. S. Battisti, P. Molnar, M. L. Clark, and G. N. Garzione ( 2016 ), A modeling study of the response of Asian summertime climate to the largest geologic forcings of the past 50 Ma, J. Geophys. Res. Atmos., 121, 5453 – 5470, doi: 10.1002/2015JD024370.
dc.identifier.citedreferenceRowley, D. B., and B. S. Currie ( 2006 ), Palaeo‐altimetry of the late Eocene to Miocene Lunpola basin, central Tibet, Nature, 439 ( 7077 ), 677 – 681.
dc.identifier.citedreferenceRowley, D. B., and C. N. Garzione ( 2007 ), Stable isotope‐based paleoaltimetry, Annu. Rev. Earth Planet. Sci., 35, 463 – 508.
dc.identifier.citedreferenceRuddiman, W. F., and J. E. Kutzbach ( 1989 ), Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west, J. Geophys. Res., 94, 18,409 – 18,427, doi: 10.1029/JD094iD15p18409.
dc.identifier.citedreferenceSherwood, S. C., R. Roca, T. M. Weckwerth, and N. G. Andronova ( 2010 ), Tropospheric water vapor, convection and climate, Rev. Geophys., 48, RG2001, doi: 10.1029/2009RG000301.
dc.identifier.citedreferenceSturm, C., F. Vimeux, and G. Krinner ( 2007 ), Intraseasonal variability in South America recorded in stable water isotopes, J. Geophys. Res., 112, D20118, doi: 10.1029/2006JD008298.
dc.identifier.citedreferenceTian, L., T. Yao, Z. Yang, and J. Pu ( 1997 ), A 4‐year’s observation of delta O‐18 in precipitation on the Tibetan Plateau, J. Glaciol. Geocryology, 19, 32 – 36.
dc.identifier.citedreferenceTian, L. D., T. D. Yao, K. MacClune, J. W. C. White, A. Schilla, B. Vaughn, R. Vachon, and K. Ichiyanagi ( 2007 ), Stable isotopic variations in west China: A consideration of moisture sources, J. Geophys. Res., 112. D10112, doi: 10.1029/2006JD007718.
dc.identifier.citedreferenceVuille, M., and M. Werner ( 2005 ), Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results, Clim. Dyn., 25 ( 4 ), 401 – 413.
dc.identifier.citedreferenceVuille, M., M. Werner, R. S. Bradley, and F. Keimig ( 2005 ), Stable isotopes in precipitation in the Asian monsoon region, J. Geophys. Res., 110, 23108, doi: 10.1029/2005JD006022.
dc.identifier.citedreferenceWerner, M., M. Heimann, and G. Hoffmann ( 1998 ), Stable water isotopes in Greenland ice cores: ECHAM 4 model simulations versus field measurements. In: IAEA, (Ed.) International Symposium on Isotopes Techniques in the study of Past and Current Environmental changes in the Hydrosphere and the Atmosophere. Vienna. 603‐612.
dc.identifier.citedreferenceWerner, M., P. M. Langebroek, T. Carlsen, M. Herold, and G. Lohmann ( 2011 ), Stable water isotopes in the ECHAM5 general circulation model: Toward high‐resolution isotope modeling on a global scale, J. Geophys. Res., 116, D15109, doi: 10.1029/2011JD015681.
dc.identifier.citedreferenceYao, T. D., V. Masson, J. Jouzel, M. Stievenard, W. Z. Sun, and K. Q. Jiao ( 1999 ), Relationships between delta O‐18 in precipitation and surface air temperature in the Urumqi River Basin, east Tianshan Mountains, China, Geophys. Res. Lett., 26, 3473 – 3476, doi: 10.1029/1999GL006061.
dc.identifier.citedreferenceYao, T., et al. ( 2013 ), A review of climatic controls on in delta O‐18 precipitation over the Tibetan Plateau: Observations and simulations, Rev. Geophys., 51, 525 – 548, doi: 10.1002/rog.20023.
dc.identifier.citedreferenceYurtsever, Y., and J. Gat ( 1981 ), Stable isotope hydrology: Deuterium and Oxygen‐18 in the water cycle, Atmospheric waters, eds. Gat, J. R. and Gonfianini, R., IAEA, Vienna.
dc.identifier.citedreferenceArmengaud, A., R. Koster, J. Jouzel, and P. Ciais ( 1998 ), Deuterium excess in Greenland snow: Analysis with simple and complex models, J. Geophys. Res., 103, 8947 – 8953, doi: 10.1029/98JD00274.
dc.identifier.citedreferenceBattisti, D. S., Q. Ding, and G. H. Roe ( 2014 ), Coherent pan‐Asian climatic and isotopic response to orbital forcing of tropical insolation, J. Geophys. Res. Atmos., 119, 11,997 – 12,020, doi: 10.1002/2014JD021960.
dc.identifier.citedreferenceBertò, A. ( 2005 ), Lagrangian trajectory analysis for the identification of moist airflows producing intense precipitation events over the Alps, 223 pp., University of Trento.
dc.identifier.citedreferenceBoos, W. R., and Z. Kuang ( 2010 ), Dominant control of the South Asian monsoon by orographic insulation versus plateau heating, Nature, 463, 218 – 222.
dc.identifier.citedreferenceBowen, G. J., and J. Revenaugh ( 2003 ), Interpolating the isotopic composition of modern meteoric precipitation, Water Resour. Res., 39 ( 10 ), 1299, doi: 10.1029/2003WR002086.
dc.identifier.citedreferenceButzin, M., M. Werner, V. Masson‐Delmotte, C. Risi, C. Frankenberg, K. Gribanov, J. Jouzel, and V. I. Zakharov ( 2014 ), Variations of oxygen‐18 in West Siberian precipitation during the last 50 years, Atmos. Chem. Phys., 14, 5853 – 5869, doi: 10.5194/acp-14-5853-2014.
dc.identifier.citedreferenceCole, J. E., R. D. Rind, R. S. Webb, J. Jouzel, and R. Healy ( 1999 ), Climatic controls on interannual variability of precipitation δ 18 O: The simulated influence of temperature, precipitation amount and vapor source region, J. Geophys. Res., 104, 14,223 – 14,235, doi: 10.1029/1999JD900182.
dc.identifier.citedreferenceDeCelles, P. G., J. Quade, P. Kapp, M. J. Fan, D. L. Dettman, and L. Ding ( 2007 ), High and dry in central Tibet during the Late Oligocene, Earth Planet. Sci. Lett., 253 ( 3‐4 ), 389 – 401.
dc.identifier.citedreferenceEhlers, T. A., and C. J. Poulsen ( 2009 ), Influence of Andean uplift on climate and paleoaltimetry estimates, Earth Planet. Sci. Lett., 281 ( 3‐4 ), 238 – 248.
dc.identifier.citedreferenceFeng, R., C. J. Poulsen, M. Werner, C. P. Chamberlain, H. T. Mix, and A. Mulch ( 2013 ), Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera, Am. J. Sci., 313, 613 – 648, doi: 10.2475/07.3013.01.
dc.identifier.citedreferenceGao, J., S. S. P. Shen, T. Yao, N. Tafolla, C. Risi, and Y. He ( 2015 ), Reconstruction of precipitation δ 18 O over the Tibetan Plateau since 1910, J. Geophys. Res. Atmos., 120, 4878 – 4888, doi: 10.1002/2015JD023233.
dc.identifier.citedreferenceGalewsky, J. ( 2009 ), Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies, Geology, 37 ( 9 ), 791 – 794, doi: 10.1130/G30008A.1.
dc.identifier.citedreferenceGarzione, C. N. ( 2008 ), Research focus surface uplift of Tibet and Cenozoic global cooling, Geology, 36 ( 12 ), 1003 – 1004.
dc.identifier.citedreferenceGraham, S. A., C. P. Chamberlain, Y. J. Yue, B. D. Ritts, A. D. Hanson, T. W. Horton, J. R. Waldbauer, M. A. Poage, and X. Feng ( 2005 ), Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin, Am. J. Sci., 305 ( 2 ), 101 – 118.
dc.identifier.citedreferenceHe, Y., et al. ( 2015 ), Impact of atmospheric convection on south Tibet summer precipitation isotopologue composition using a combination of in situ measurements, satellite data, and atmospheric general circulation modeling, J. Geophys. Res. Atmos., 120, 3852 – 3871, doi: 10.1002/2014JD022180.
dc.identifier.citedreferenceHoffmann, G., M. Werner, and M. Heimann ( 1998 ), Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years, J. Geophys. Res., 103, 23,323 – 23,323, doi: 10.1029/98JD02857.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.