Show simple item record

Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations

dc.contributor.authorPeterson, W. K.
dc.contributor.authorThiemann, E. M. B
dc.contributor.authorEparvier, Francis G.
dc.contributor.authorAndersson, Laila
dc.contributor.authorFowler, C. M.
dc.contributor.authorLarson, Davin
dc.contributor.authorMitchell, Dave
dc.contributor.authorMazelle, Christian
dc.contributor.authorFontenla, Juan
dc.contributor.authorEvans, J. Scott
dc.contributor.authorXu, Shaosui
dc.contributor.authorLiemohn, Mike
dc.contributor.authorBougher, Stephen
dc.contributor.authorSakai, Shotaro
dc.contributor.authorCravens, T. E.
dc.contributor.authorElrod, M. K.
dc.contributor.authorBenna, M.
dc.contributor.authorMahaffy, P.
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2016-11-18T21:23:20Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationPeterson, W. K.; Thiemann, E. M. B; Eparvier, Francis G.; Andersson, Laila; Fowler, C. M.; Larson, Davin; Mitchell, Dave; Mazelle, Christian; Fontenla, Juan; Evans, J. Scott; Xu, Shaosui; Liemohn, Mike; Bougher, Stephen; Sakai, Shotaro; Cravens, T. E.; Elrod, M. K.; Benna, M.; Mahaffy, P.; Jakosky, Bruce (2016). "Photoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations." Journal of Geophysical Research: Space Physics 121(9): 8859-8870.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134435
dc.description.abstractUnderstanding the evolution of the Martian atmosphere requires knowledge of processes transforming solar irradiance into thermal energy well enough to model them accurately. Here we compare Martian photoelectron energy spectra measured at periapsis by Mars Atmosphere and Volatile Evolution MissioN (MAVEN) with calculations made using three photoelectron production codes and three solar irradiance models as well as modeled and measured CO2 densities. We restricted our comparisons to regions where the contribution from solar wind electrons and ions were negligible. The two intervals examined on 19 October 2014 have different observed incident solar irradiance spectra. In spite of the differences in photoionization cross sections and irradiance spectra used, we find the agreement between models to be within the combined uncertainties associated with the observations from the MAVEN neutral density, electron flux, and solar irradiance instruments.Key PointsWe report Martian photoelectron energy spectra obtained on 19 October 2014We compare model energy spectra using observed EUV and XUV irradiances and in situ neutral densitiesWe find agreement between models and observations within experimental uncertainties
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotoelectron
dc.subject.otherobservation
dc.subject.othermodel
dc.subject.otherMars
dc.subject.otherthermosphere
dc.titlePhotoelectrons and solar ionizing radiation at Mars: Predictions versus MAVEN observations
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134435/1/jgra52870.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134435/2/jgra52870_am.pdf
dc.identifier.doi10.1002/2016JA022677
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field‐dependent transport code, J. Geophys. Res., 108 ( E12 ), 5134, doi: 10.1029/2003JE002158.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, G. T. Delory, A. Eriksson, J. Westfall, H. Reed, J. McCauly, D. Summers, and D. Meyers ( 2015 ), The Langmuir Probe and Waves (LPW) instrument for MAVEN, Space Sci. Rev., doi: 10.1007/s11214-015-0194-3.
dc.identifier.citedreferenceBougher, S. W. ( 2012 ), Coupled MGCM‐MTGCM Mars thermosphere simulations and resulting data products in support of the MAVEN mission, JPL/CDP Rep., pp.  1 – 9, 6 Aug.
dc.identifier.citedreferenceBougher, S. W., D. Pawlowski, J. M. Bell, S. Nelli, T. McDunn, J. R. Murphy, M. Chizek, and A. Ridley ( 2015a ), Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. Planets, 120, 311 – 342, doi: 10.1002/2014JE004715.
dc.identifier.citedreferenceBougher, S., et al. ( 2015b ), Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability, Science, 350, doi: 10.1126/science.aad0459.
dc.identifier.citedreferenceCarlson, C. W., J. P. McFadden, P. Turin, D. W. Curtis, and A. Magnoncelli ( 2001 ), The electron and ion plasma experiment for FAST, Space Sci. Rev., 98, 33 – 66, doi: 10.1023/A:1013139910140.
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ). Flare irradiance spectral model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare irradiance spectral model (FISM): Flare component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.
dc.identifier.citedreferenceCravens, T. E., J. Vann, J. Clark, J. Yu, C. N. Keller, and C. Brull ( 2004 ), The ionosphere of Titan: An updated theoretical model, Adv. Space Res., 33, 212, doi: 10.1016/j.asr.2003.02.012.
dc.identifier.citedreferenceEparvier, F. G., P. C. Chamberlin, T. N. Woods, and E. M. B. Thiemann ( 2015 ), The solar extreme ultraviolet monitor for MAVEN, Space Sci. Rev., doi: 10.1007/s11214-015-0195-2.
dc.identifier.citedreferenceFontenla, J. M., E. Quemerais, I. Gonzalez Hernandez, C. Lindsey, and M. Haberreiter ( 2009 ), Solar irradiance forecast and far‐side imaging, Adv. Space Res., 44, 457, doi: 10.1016/j.asr.2009.04.010.
dc.identifier.citedreferenceFontenla, J. M., J. Harder, W. Livingston, M. Snow, and T. Woods ( 2011 ), High‐resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res., 116, D20108, doi: 10.1029/2011JD016032.
dc.identifier.citedreferenceFox, J. L. ( 1991 ), Cross sections and reaction rates of relevance to aeronomy, Rev. Geophys., 29, 1110 – 1131.
dc.identifier.citedreferenceFox, J. L., and K. Y. Sung ( 2001 ), Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106, 21,305, doi: 10.1029/2001JA000069.
dc.identifier.citedreferenceFrahm, R. A., et al. ( 2006 ), Locations of atmospheric photoelectron energy peaks within the Mars environment, Space Sci. Rev., 126, 389 – 402, doi: 10.1007/s11214-006-9119-5.
dc.identifier.citedreferenceGan, L., and T. E. Cravens ( 1990 ), Electron energetics in the inner coma of comet Halley, J. Geophys. Res., 95, 6285 – 6303, doi: 10.1029/JA095iA05p06285.
dc.identifier.citedreferenceHalekas, J. S., et al. ( 2015 ), MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars, Geophys. Res. Lett., 42, 8901 – 8909, doi: 10.1002/2015GL064693.
dc.identifier.citedreferenceJakosky, B. M., J. M. Grebowsky, J. G. Luhmann, and D. A. Brain ( 2015 ), Initial results from the MAVEN mission to Mars, Geophys. Res. Lett., 42, 8791 – 8802, doi: 10.1002/2015GL065271.
dc.identifier.citedreferenceMahaffy, P., et al. ( 2015 ), The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission, Space Sci. Rev., 195, 49, doi: 10.1007/s11214-014-0091-1.
dc.identifier.citedreferenceMitchell, D. L., et al. ( 2016 ), The MAVEN solar wind electron analyzer (SWEA), Space Sci. Rev., 34, doi: 10.1007/s11214-015-0232-1.
dc.identifier.citedreferenceModdeman, W. E., T. A. Carlson, M. O. Krause, B. P. Pullen, W. E. Bull, and G. K. Schweitzer ( 1971 ), Determination of the K—LL Auger Spectra of N 2, O 2, CO, NO, H 2 O, and CO 2, J. Chem. Phys., 55, 2371, doi: 10.1063/1.1676411.
dc.identifier.citedreferencePeterson, W. K., T. N. Woods, J. M. Fontenla, P. G. Richards, P. C. Chamberlin, S. C. Solomon, W. K. Tobiska, and H. P. Warren ( 2012 ), Solar EUV and XUV energy input to thermosphere on solar rotation time scales derived from photoelectron observations, J. Geophys. Res., 117, A05320, doi: 10.1029/2011JA017382.
dc.identifier.citedreferencePeterson, W. K., D. A. Brain, D. L. Mitchell, S. M. Bailey, and P. C. Chamberlin ( 2013 ), Correlations between variations in solar EUV and soft X‐ray irradiance and photoelectron energy spectra observed on Mars and Earth, J. Geophys. Res. Space Physics, 118, 7338 – 7347, doi: 10.1002/2013JA019251.
dc.identifier.citedreferenceSakai, S., A. Rahmati, D. L. Mitchell, T. E. Cravens, S. W. Bougher, C. Mazelle, W. K. Peterson, F. G. Eparvier, J. M. Fontenla, and B. M. Jakosky ( 2015 ), Model insights into energetic photoelectrons measured at Mars by MAVEN, Geophys. Res. Lett., 42, 8894 – 8900, doi: 10.1002/2015GL065169.
dc.identifier.citedreferenceStrickland, D. J., J. Bishop, J. S. Evans, T. Majeed, P. M. Shen, R. J. Cox, R. Link, and R. E. Huffman ( 1999 ), Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results, J. Quant. Spectros. Radiat. Transfer, 62, 689, doi: 10.1016/S0022-4073(98)00098-3.
dc.identifier.citedreferenceWoods, T., F. Eparvier, S. Bailey, S. C. Solomon, G. Rottman, G. Lawrence, R. Roble, O. R. White, J. Lean, and W. K. Tobiska ( 1998 ), TIMED solar EUV Experiment, SPIE Proc., 3442, 180.
dc.identifier.citedreferenceXu, S., and M. W. Liemohn ( 2015 ), Superthermal electron transport model for Mars, Earth Space Sci., 2, 47 – 64, doi: 10.1002/2014EA000043.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, W. K. Peterson, J. Fontenla, and P. Chamberlin ( 2015a ), Comparison of different solar irradiance models for the superthermal electron transport model for Mars, Planet. Space Sci, doi: 10.1016/j.pss.2015.09.008, in press.
dc.identifier.citedreferenceXu, S., M. Liemohn, S. Bougher, and D. Mitchell ( 2015b ), Enhanced carbon dioxide causing the dust storm‐related increase in high‐altitude photoelectron fluxes at Mars, Geophys. Res. Lett., 42, 9702 – 9710, doi: 10.1002/2015GL066043.
dc.identifier.citedreferenceZurek, R., R. H. Tolson, D. Baird, M. Z. Johnson, and S. W. Bougher ( 2015 ), Application of MAVEN accelerometer and attitude control data to Mars atmospheric characterization, Space Sci. Rev., 195, 303, doi: 10.1007/s11214-014-0095-x.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.