Show simple item record

Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury

dc.contributor.authorSchmidt, J. A.
dc.contributor.authorJacob, D. J.
dc.contributor.authorHorowitz, H. M.
dc.contributor.authorHu, L.
dc.contributor.authorSherwen, T.
dc.contributor.authorEvans, M. J.
dc.contributor.authorLiang, Q.
dc.contributor.authorSuleiman, R. M.
dc.contributor.authorOram, D. E.
dc.contributor.authorLe Breton, M.
dc.contributor.authorPercival, C. J.
dc.contributor.authorWang, S.
dc.contributor.authorDix, B.
dc.contributor.authorVolkamer, R.
dc.date.accessioned2016-11-18T21:23:36Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10-16
dc.identifier.citationSchmidt, J. A.; Jacob, D. J.; Horowitz, H. M.; Hu, L.; Sherwen, T.; Evans, M. J.; Liang, Q.; Suleiman, R. M.; Oram, D. E.; Le Breton, M.; Percival, C. J.; Wang, S.; Dix, B.; Volkamer, R. (2016). "Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury." Journal of Geophysical Research: Atmospheres 121(19): 11,819-11,835.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/134446
dc.description.abstractAircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS‐Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br‐Cl) chemistry than has been done in the past. Important reactions for regenerating BrO from its nonradical reservoirs include HOBr + Br−/Cl− in both aerosols and clouds, and oxidation of Br− by ClNO3 and ozone. Most tropospheric BrO in the model is in the free troposphere, consistent with observations and originates mainly from the photolysis and oxidation of ocean‐emitted CHBr3. Stratospheric input is also important in the upper troposphere. Including production of gas phase inorganic bromine from debromination of acidified sea salt aerosol increases free tropospheric Bry by about 30%. We find HOBr to be the dominant gas‐phase reservoir of inorganic bromine. Halogen (Br‐Cl) radical chemistry as implemented here in GEOS‐Chem drives 14% and 11% decreases in the global burdens of tropospheric ozone and OH, respectively, a 16% increase in the atmospheric lifetime of methane, and an atmospheric lifetime of 6 months for elemental mercury. The dominant mechanism for the Br‐Cl driven tropospheric ozone decrease is oxidation of NOx by formation and hydrolysis of BrNO3 and ClNO3.Key PointsRecent BrO observations are interpreted using a new GEOS‐Chem coupled Br‐Cl simulationMultiphase oxidation of Br‐ by ozone is critical for maintaining the high observed levels of BrOBr and Cl lower the global burden of O3 by 14% by increasing NOx loss and shortening the O3 lifetime
dc.publisherWiley Periodicals, Inc.
dc.publisherAGU
dc.subject.otherGEOS‐Chem
dc.subject.otherhalogen
dc.subject.othertroposphere
dc.subject.otherozone
dc.subject.othermercury
dc.subject.othermodeling
dc.titleModeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134446/1/jgrd53323.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134446/2/jgrd53323-sup-0001-supplementary.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134446/3/jgrd53323_am.pdf
dc.identifier.doi10.1002/2015JD024229
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSaiz‐Lopez, A., et al. ( 2012 ), Estimating the climate significance of halogen‐driven ozone loss in the tropical marine troposphere, Atmos. Chem. Phys., 12, 3939 – 3949, doi: 10.5194/acp-12-3939-2012.
dc.identifier.citedreferenceMontzka, S. A., et al. ( 2010 ), Ozone‐Depleting Substances (ODSs) and related chemicals, chapter 1 in scientific assessment of ozone depletion: 2010, Global Ozone Res. and Monitoring Project‐Rep. No. 52, 516 pp., World Meteorol. Org., Geneva, Switz.
dc.identifier.citedreferenceMurray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak ( 2012 ), Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307, doi: 10.1029/2012JD017934.
dc.identifier.citedreferenceNilsson, E. J. K., L. M. T. Joelsson, J. Heimdal, M. S. Johnson, and O. J. Nielsen ( 2013 ), Re‐evaluation of the reaction rate coefficient of CH 3 Br+OH with implications for the atmospheric budget of methyl bromide, Atmos. Environ., 80, 70 – 74, doi: 10.1016/j.atmosenv.2013.07.046.
dc.identifier.citedreferenceOrdóñez, C., J.‐F. Lamarque, S. Tilmes, D. E. Kinnison, E. L. Atlas, D. R. Blake, G. Sousa Santos, G. Brasseur, and A. Saiz‐Lopez ( 2012 ), Bromine and iodine chemistry in a global chemistry‐climate model: Description and evaluation of very short‐lived oceanic sources, Atmos. Chem. Phys., 12, 1423 – 1447, doi: 10.5194/acp-12-1423-2012.
dc.identifier.citedreferencePark, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin ( 2004 ), Natural and transboundary pollution influences on sulfate‐nitrate‐ammonium aerosols in the United States: Implications for policy, J. Geophys. Res., 109, D15204, doi: 10.1029/2003JD004473.
dc.identifier.citedreferenceParrella, J. P., et al. ( 2012 ), Tropospheric bromine chemistry: Implications for present and pre‐industrial ozone and mercury, Atmos. Chem. Phys., 12, 6723 – 6740, doi: 10.5194/acp-12-6723-2012.
dc.identifier.citedreferencePaulot, F., D. J. Jacob, M. T. Johnson, T. G. Bell, A. R. Baker, W. C. Keene, I. D. Lima, S. C. Doney, and C. A. Stock ( 2015 ), Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations, Global Biogeochem. Cycles, 29, 1165 – 1178, doi: 10.1002/2015GB005106.
dc.identifier.citedreferencePlatt, U., and G. Hönninger ( 2003 ), The role of halogen species in the troposphere, Chemosphere, 52 ( 2 ), 325 – 338, doi: 10.1016/S0045-6535(03)00216-9.
dc.identifier.citedreferencePrados‐Roman, C., et al. ( 2011 ), Airborne DOAS limb measurements of tropospheric trace gas profiles: Case studies on the profile retrieval of O 4 and BrO, Atmos. Meas. Tech., 4 ( 6 ), 1241 – 1260, doi: 10.5194/amt-4-1241-2011.
dc.identifier.citedreferencePrather, M. J., C. D. Holmes, and J. Hsu ( 2012 ), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi: 10.1029/2012GL051440.
dc.identifier.citedreferencePye, H. O. T., H. Liao, S. Wu, L. J. Mickley, D. J. Jacob, D. K. Henze, and J. H. Seinfeld ( 2009 ), Effect of changes in climate and emissions on future sulfate‐nitrate‐ammonium aerosol levels in the United States, J. Geophys. Res., 114, D01205, doi: 10.1029/2008JD010701.
dc.identifier.citedreferenceRead, K. A., et al. ( 2008 ), Extensive halogen‐mediated ozone destruction over the tropical Atlantic Ocean, Nature, 453, 1232 – 1235, doi: 10.1038/nature07035.
dc.identifier.citedreferenceSaiz‐Lopez, A., J. M. C. Plane, and J. A. Shillito ( 2004 ), Bromine oxide in the mid‐latitude marine boundary layer, Geophys. Res. Lett., 31, L03111, doi: 10.1029/2003GL018956.
dc.identifier.citedreferenceSander, R., et al. ( 2003 ), Inorganic bromine in the marine boundary layer: A critical review, Atmos. Chem. Phys., 3, 1301 – 1336, doi: 10.5194/acp-3-1301-2003.
dc.identifier.citedreferenceSherwen, T., et al. ( 2016 ), Iodine’s impact on tropospheric oxidants: A global model study in GEOS‐Chem, Atmos. Chem. Phys., 16 ( 2 ), 1161 – 1186, doi: 10.5194/acp-16-1161-2016.
dc.identifier.citedreferenceSimpson, W. R., et al. ( 2007 ), Halogens and their role in polar boundary‐layer ozone depletion, Atmos. Chem. Phys., 7 ( 16 ), 4375 – 4418, doi: 10.5194/acp-7-4375-2007.
dc.identifier.citedreferenceSimpson, W. R., S. S. Brown, A. Saiz‐Lopez, J. A. Thornton, and R. von Glasow ( 2015 ), Tropospheric halogen chemistry: Sources, cycling, and impacts, Chem. Rev., 115 ( 10 ), 4035 – 4062, doi: 10.1021/cr5006638.
dc.identifier.citedreferenceSinnhuber, B.‐M., et al. ( 2005 ), Global observations of stratospheric bromine monoxide from sciamachy, Geophys. Res. Lett., 32, L20810, doi: 10.1029/2005GL023839.
dc.identifier.citedreferenceSlemr, F., G. Schuster, and W. Seiler ( 1985 ), Distribution, speciation, and budget of atmospheric mercury, J. Atmos. Chem., 3 ( 4 ), 407 – 434, doi: 10.1007/BF00053870.
dc.identifier.citedreferenceTheys, N., et al. ( 2011 ), Global observations of tropospheric BrO columns using GOME‐2 satellite data, Atmos. Chem. Phys., 11, 1791 – 1811, doi: 10.5194/acp-11-1791-2011.
dc.identifier.citedreferenceThornton, J. A., et al. ( 2010 ), A large atomic chlorine source inferred from mid‐continental reactive nitrogen chemistry, Nature, 464 ( 7286 ), 271 – 274.
dc.identifier.citedreferenceVolkamer, R., et al. ( 2015 ), NO 2, H 2 O, O 2 ‐O 2 and aerosol extinction profiles in the tropics: Comparison with aircraft‐/ship‐based in situ and lidar measurements, Atmos. Meas. Tech., 8 ( 1 ), 2121 – 2148, doi: 10.5194/amt-8-2121-2015.
dc.identifier.citedreferencevon Glasow, R., R. von Kuhlmann, M. G. Lawrence, U. Platt, and P. J. Crutzen ( 2004 ), Impact of reactive bromine chemistry in the troposphere, Atmos. Chem. Phys., 4 ( 11–12 ), 2481 – 2497, doi: 10.5194/acp-4-2481-2004.
dc.identifier.citedreferenceWang, Q., et al. ( 2011 ), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter‐spring: Implications for radiative forcing, Atmos. Chem. Phys., 11 ( 23 ), 12,453 – 12,473, doi: 10.5194/acp-11-12453-2011.
dc.identifier.citedreferenceWang, S., et al. ( 2015 ), Active and widespread halogen chemistry in the tropical and subtropical free troposphere, Proc. Natl. Acad. Sci. U.S.A., 112, 9281 – 9286, doi: 10.1073/pnas.1505142112.
dc.identifier.citedreferenceWang, Y., D. J. Jacob, and J. A. Logan ( 1998 ), Global simulation of tropospheric O 3 ‐NO x ‐hydrocarbon chemistry: 1. Model formulation, J. Geophys. Res., 103 ( D9 ), 10,713 – 10,725, doi: 10.1029/98JD00158.
dc.identifier.citedreferenceWarwick, N. J., J. A. Pyle, G. D. Carver, X. Yang, N. H. Savage, F. M. O’Connor, and R. A. Cox ( 2006 ), Global modeling of biogenic bromocarbons, J. Geophys. Res., 111, D24305, doi: 10.1029/2006JD007264.
dc.identifier.citedreferenceWesely, M. ( 1989 ), Parameterization of surface resistances to gaseous dry deposition in regional‐scale numerical models, Atmos. Environ., 23 ( 6 ), 1293 – 1304, doi: 10.1016/0004-6981(89)90153-4.
dc.identifier.citedreferenceWisher, A., D. E. Oram, J. C. Laube, G. P. Mills, P. van Velthoven, A. Zahn, and C. A. M. Brenninkmeijer ( 2014 ), Very short‐lived bromomethanes measured by the CARIBIC observatory over the North Atlantic, Africa and Southeast Asia during 2009–2013, Atmos. Chem. Phys., 14 ( 7 ), 3557 – 3570, doi: 10.5194/acp-14-3557-2014.
dc.identifier.citedreferenceWofsy, S. C., et al. ( 2012a ), HIPPO combined discrete flask and GC sample GHG, halo‐, hydrocarbon data (R_20121129), Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., doi: 10.3334/CDIAC/hippo_012.
dc.identifier.citedreferenceWofsy, S. C., et al. ( 2012b ), HIPPO NOAA flask sample GHG, halocarbon, and hydrocarbon data (R_20121129), Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn., doi: 10.3334/CDIAC/hippo_013.
dc.identifier.citedreferenceWu, S., L. J. Mickley, D. J. Jacob, J. A. Logan, R. M. Yantosca, and D. Rind ( 2007 ), Why are there large differences between models in global budgets of tropospheric ozone?, J. Geophys. Res., 112, D05302, doi: 10.1029/2006JD007801.
dc.identifier.citedreferenceYang, X., R. A. Cox, N. J. Warwick, J. A. Pyle, G. D. Carver, F. M. O’Connor, and N. H. Savage ( 2005 ), Tropospheric bromine chemistry and its impacts on ozone: A model study, J. Geophys. Res., 110, D23311, doi: 10.1029/2005JD006244.
dc.identifier.citedreferenceAlexander, B., R. J. Park, D. J. Jacob, Q. B. Li, R. M. Yantosca, J. Savarino, C. C. W. Lee, and M. H. Thiemens ( 2005 ), Sulfate formation in sea‐salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, doi: 10.1029/2004JD005659.
dc.identifier.citedreferenceAlexander, B., D. J. Allman, H. M. Amos, T. D. Fairlie, J. Dachs, D. A. Hegg, and R. S. Sletten ( 2012 ), Isotopic constraints on sulfate aerosol formation pathways in the marine boundary layer of the subtropical northeast Atlantic Ocean, J. Geophys. Res., 117, D06304, doi: 10.1029/2011JD016773.
dc.identifier.citedreferenceAmmann, M., R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington ( 2013 ), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—Heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045 – 8228, doi: 10.5194/acp-13-8045-2013.
dc.identifier.citedreferenceAmos, H. M., et al. ( 2012 ), Gas‐particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition, Atmos. Chem. Phys., 12 ( 1 ), 591 – 603, doi: 10.5194/acp-12-591-2012.
dc.identifier.citedreferenceBarrie, L. A., J. W. Bottenheim, R. C. Schnell, P. J. Crutzen, and R. A. Rasmussen ( 1988 ), Ozone destruction and photochemical‐reactions at polar sunrise in the lower Arctic atmosphere, Nature, 334, 138 – 141, doi: 10.1038/334138a0.
dc.identifier.citedreferenceBeckwith, R. C., T. X. Wang, and D. W. Margerum ( 1996 ), Equilibrium and kinetics of bromine hydrolysis, Inorg. Chem., 35 ( 4 ), 995 – 1000, doi: 10.1021/ic950909w.
dc.identifier.citedreferenceBogdan, A., M. J. Molina, K. Sassen, and M. Kulmala ( 2006 ), Formation of low‐temperature cirrus from H 2 SO 4 /H 2 O aerosol droplets, J. Phys. Chem. A, 110 ( 46 ), 12,541 – 12,542, doi: 10.1021/jp065898e.
dc.identifier.citedreferenceBogdan, A., M. J. Molina, H. Tenhu, E. Mayer, and T. Loerting ( 2010 ), Formation of mixed‐phase particles during the freezing of polar stratospheric ice clouds, Nat. Chem., 2, 197 – 201, doi: 10.1038/nchem.540.
dc.identifier.citedreferenceBreider, T. J., M. P. Chipperfield, N. A. D. Richards, K. S. Carslaw, G. W. Mann, and D. V. Spracklen ( 2010 ), Impact of BrO on dimethylsulfide in the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi: 10.1029/2009GL040868.
dc.identifier.citedreferenceCoburn, S., B. Dix, E. Edgerton, C. D. Holmes, D. Kinnison, Q. Liang, A. ter Schure, S. Y. Wang, and R. Volkamer ( 2016 ), Mercury oxidation from bromine chemistry in the free troposphere over the Southeastern US, Atmos. Chem. Phys., 16 ( 6 ), 3743 – 3760, doi: 10.5194/acp-16-3743-2016.
dc.identifier.citedreferenceDeiber, G., C. George, S. Le Calvé, F. Schweitzer, and P. Mirabel ( 2004 ), Uptake study of ClONO 2 and BrONO 2 by halide containing droplets, Atmos. Chem. Phys., 4 ( 5 ), 1291 – 1299, doi: 10.5194/acp-4-1291-2004.
dc.identifier.citedreferenceDibble, T. S., M. J. Zelie, and H. Mao ( 2012 ), Thermodynamics of reactions of ClHg and BrHg radicals with atmospherically abundant free radicals, Atmos. Chem. Phys., 12 ( 21 ), 10,271 – 10,279, doi: 10.5194/acp-12-10271-2012.
dc.identifier.citedreferenceDix, B., S. Baidar, J. F. Bresch, S. R. Hall, K. S. Schmidt, S. Wang, and R. Volkamer ( 2013 ), Detection of iodine monoxide in the tropical free troposphere, Proc. Natl. Acad. Sci. U.S.A., 110 ( 6 ), 2035 – 2040, doi: 10.1073/pnas.1212386110.
dc.identifier.citedreferenceEastham, S. D., D. K. Weisenstein, and S. R. H. Barrett ( 2014 ), Development and evaluation of the unified tropospheric‐stratospheric chemistry extension (UCX) for the global chemistry‐transport model GEOS‐Chem, Atmos. Environ., 89, 52 – 63, doi: 10.1016/j.atmosenv.2014.02.001.
dc.identifier.citedreferenceFernandez, R. P., R. J. Salawitch, D. E. Kinnison, J.‐F. Lamarque, and A. Saiz‐Lopez ( 2014 ), Bromine partitioning in the tropical tropopause layer: Implications for stratospheric injection, Atmos. Chem. Phys., 14 ( 24 ), 13,391 – 13,410, doi: 10.5194/acp-14-13391-2014.
dc.identifier.citedreferenceFickert, S., J. W. Adams, and J. N. Crowley ( 1999 ), Activation of Br 2 and BrCl via uptake of HOBr onto aqueous salt solutions, J. Geophys. Res., 104 ( D19 ), 23,719 – 23,727, doi: 10.1029/1999JD900359.
dc.identifier.citedreferenceFroyd, K. D., D. M. Murphy, T. J. Sanford, D. S. Thomson, J. C. Wilson, L. Pfister, and L. Lait ( 2009 ), Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9 ( 13 ), 4363 – 4385, doi: 10.5194/acp-9-4363-2009.
dc.identifier.citedreferenceGomez Martin, J. C., et al. ( 2013 ), Iodine chemistry in the eastern Pacific marine boundary layer, J. Geophys. Res. Atmos., 118, 887 – 904, doi: 10.1002/jgrd.50132.
dc.identifier.citedreferenceGoodsite, M. E., J. M. C. Plane, and H. Skov ( 2004 ), A theoretical study of the oxidation of Hg 0 to HgBr2 in the troposphere, Environ. Sci. Technol., 38 ( 6 ), 1772 – 1776, doi: 10.1021/es034680s.
dc.identifier.citedreferenceGratz, L. E., et al. ( 2015 ), Oxidation of mercury by bromine in the subtropical Pacific free troposphere, Geophys. Res. Lett., 42, 10,494 – 10,502, doi: 10.1002/2015GL066645.
dc.identifier.citedreferenceHolmes, C. D., D. J. Jacob, and X. Yang ( 2006 ), Global lifetime of elemental mercury against oxidation by atomic bromine in the free troposphere, Geophys. Res. Lett., 33, L20808, doi: 10.1029/2006GL027176.
dc.identifier.citedreferenceHolmes, C. D., D. J. Jacob, E. S. Corbitt, J. Mao, X. Yang, R. Talbot, and F. Slemr ( 2010 ), Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12,037 – 12,057, doi: 10.5194/acp-10-12037-2010.
dc.identifier.citedreferenceHossaini, R., M. P. Chipperfield, B. M. Monge‐Sanz, N. A. D. Richards, E. Atlas, and D. R. Blake ( 2010 ), Bromoform and dibromomethane in the tropics: A 3‐D model study of chemistry and transport, Atmos. Chem. Phys., 10 ( 2 ), 719 – 735, doi: 10.5194/acp-10-719-2010.
dc.identifier.citedreferenceJaegle, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.‐T. Lin ( 2011 ), Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 3137 – 3157, doi: 10.5194/acp-11-3137-2011.
dc.identifier.citedreferenceLeser, H., G. Hönninger, and U. Platt ( 2003 ), MAX‐DOAS measurements of BrO and NO 2 in the marine boundary layer, Geophys. Res. Lett., 30 ( 10 ), 1537, doi: 10.1029/2002GL015811.
dc.identifier.citedreferenceLewis, E. R., and S. E. Schwartz ( 2004 ), Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review, AGU, 413  pp., Washington, D. C.
dc.identifier.citedreferenceLiang, L., and P. C. Singer ( 2003 ), Factors influencing the formation and relative distribution of haloacetic acids and trihalomethanes in drinking water, Environ. Sci. Technol., 37 ( 13 ), 2920 – 2928.
dc.identifier.citedreferenceLiang, Q., R. S. Stolarski, S. R. Kawa, J. E. Nielsen, A. R. Douglass, J. M. Rodriguez, D. R. Blake, E. L. Atlas, and L. E. Ott ( 2010 ), Finding the missing stratospheric Br y: A global modeling study of CHBr 3 and CH2Br 2, Atmos. Chem. Phys., 10, 2269 – 2286, doi: 10.5194/acp-10-2269-2010.
dc.identifier.citedreferenceLiang, Q., E. Atlas, D. Blake, M. Dorf, K. Pfeilsticker, and S. Schauffler ( 2014 ), Convective transport of very short lived bromocarbons to the stratosphere, Atmos. Chem. Phys., 14 ( 11 ), 5781 – 5792, doi: 10.5194/acp-14-5781-2014.
dc.identifier.citedreferenceLong, M. S., W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson ( 2014 ), Sensitivity of tropospheric chemical composition to halogen‐radical chemistry using a fully coupled size‐resolved multiphase chemistry‐global climate system: Halogen distributions, aerosol composition, and sensitivity of climate‐relevant gases, Atmos. Chem. Phys., 14, 3397 – 3425, doi: 10.5194/acp-14-3397-2014.
dc.identifier.citedreferenceMartin, M., D. Pöhler, K. Seitz, R. Sinreich, and U. Platt ( 2009 ), BrO measurements over the Eastern North‐Atlantic, Atmos. Chem. Phys., 9, 9545 – 9554, doi: 10.5194/acp-9-9545-2009.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.