Show simple item record

Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse

dc.contributor.authorWu, Rong
dc.contributor.authorZhai, Yali
dc.contributor.authorKuick, Rork
dc.contributor.authorKarnezis, Anthony N
dc.contributor.authorGarcia, Paloma
dc.contributor.authorNaseem, Anum
dc.contributor.authorHu, Tom C
dc.contributor.authorFearon, Eric R
dc.contributor.authorCho, Kathleen R
dc.date.accessioned2016-11-18T21:24:14Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-11
dc.identifier.citationWu, Rong; Zhai, Yali; Kuick, Rork; Karnezis, Anthony N; Garcia, Paloma; Naseem, Anum; Hu, Tom C; Fearon, Eric R; Cho, Kathleen R (2016). "Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse." The Journal of Pathology 240(3): 341-351.
dc.identifier.issn0022-3417
dc.identifier.issn1096-9896
dc.identifier.urihttps://hdl.handle.net/2027.42/134478
dc.description.abstractEndometrioid carcinoma (EC) is a relatively indolent ovarian carcinoma subtype that is nonetheless deadly if detected late. Existing genetically engineered mouse models (GEMMs) of the disease, based on transformation of the ovarian surface epithelium (OSE), take advantage of known ovarian EC driver gene lesions, but do not fully recapitulate the disease features seen in patients. An EC model in which the Apc and Pten tumour suppressor genes are conditionally deleted in murine OSE yields tumours that are biologically more aggressive and significantly less differentiated than human ECs. Importantly, OSE is not currently thought to be the tissue of origin of most ovarian cancers, including ECs, suggesting that tumour initiation in Müllerian epithelium may produce tumours that more closely resemble their human tumour counterparts. We have developed Ovgp1‐iCreERT2 mice in which the Ovgp1 promoter controls expression of tamoxifen (TAM)‐regulated Cre recombinase in oviductal epithelium – the murine equivalent of human Fallopian tube epithelium. Ovgp1‐iCreERT2;Apcfl/fl;Ptenfl/fl mice treated with TAM or injected with adenovirus expressing Cre into the ovarian bursa uniformly develop oviductal or ovarian ECs, respectively. On the basis of their morphology and global gene expression profiles, the oviduct‐derived tumours more closely resemble human ovarian ECs than do OSE‐derived tumours. Furthermore, mice with oviductal tumours survive much longer than their counterparts with ovarian tumours. The slow progression and late metastasis of oviductal tumours resembles the relatively indolent behaviour characteristic of so‐called Type I ovarian carcinomas in humans, for which EC is a prototype. Our studies demonstrate the utility of Ovgp1‐iCreERT2 mice for manipulating genes of interest specifically in the oviductal epithelium, and establish that the cell of origin is an important consideration in mouse ovarian cancer GEMMs. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.othermouse ovarian cancer model
dc.subject.otherendometrioid carcinoma
dc.subject.otheroviduct
dc.subject.otherFallopian tube
dc.subject.othercell of origin
dc.titleImpact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134478/1/path4783.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134478/2/path4783_am.pdf
dc.identifier.doi10.1002/path.4783
dc.identifier.sourceThe Journal of Pathology
dc.identifier.citedreferenceZhai Y, Kuick R, Tipton C, et al. Arid1a inactivation in an Apc‐ and Pten‐defective mouse ovarian cancer model enhances epithelial differentiation and prolongs survival. J Pathol 2016; 238: 21 – 30.
dc.identifier.citedreferenceNagy A, Gertsenstein M, Vintersten K, et al. Manipulating the Mouse Embryo: a Laboratory Manual. Cold Spring Harbor Press: New York, 2003.
dc.identifier.citedreferenceShibata H, Toyama K, Shioya H, et al. Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 1997; 278: 120 – 123.
dc.identifier.citedreferenceSuzuki A, Yamaguchi MT, Ohteki T, et al. T cell‐specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 2001; 14: 523 – 534.
dc.identifier.citedreferenceIrizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249 – 264.
dc.identifier.citedreferenceWu R, Hu T, Rehemtulla A, et al. Preclinical testing of PI3K/AKT/mTOR signaling inhibitors in a mouse model of ovarian endometrioid adenocarcinoma. Clin Cancer Res 2011; 17: 7359 – 7372.
dc.identifier.citedreferenceWu R, Baker SJ, Hu TC, et al. Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am J Pathol 2013; 182: 1391 – 1399.
dc.identifier.citedreferenceShedden K. Confidence levels for the comparison of microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article 32.
dc.identifier.citedreferenceAuersperg N. Ovarian surface epithelium as a source of ovarian cancers: unwarranted speculation or evidence‐based hypothesis? Gynecol Oncol 2013; 130: 246 – 251.
dc.identifier.citedreferenceDubeau L, Drapkin R. Coming into focus: the nonovarian origins of ovarian cancer. Ann Oncol 2013; 24 ( suppl 8 ): viii28 – viii35.
dc.identifier.citedreferencePerets R, Drapkin R. It’s totally tubular … riding the new wave of ovarian cancer research. Cancer Res 2016; 76: 10 – 17.
dc.identifier.citedreferenceCommittee on the State of the Science in Ovarian Cancer Research Board on Health Care Services, Institute of Medicine; National Academies of Sciences, Engineering, and Medicine. Ovarian Cancers: Evolving Paradigms in Research and Care. The National Academies Press, Washington, DC, 2016.
dc.identifier.citedreferenceFan HY, Liu Z, Paquet M, et al. Cell type‐specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells. Cancer Res 2009; 69: 6463 – 6472.
dc.identifier.citedreferenceMullany LK, Fan HY, Liu Z, et al. Molecular and functional characteristics of ovarian surface epithelial cells transformed by KrasG12D and loss of Pten in a mouse model in vivo. Oncogene 2011; 30: 3522 – 3536.
dc.identifier.citedreferenceTanwar PS, Zhang L, Kaneko‐Tarui T, et al. Mammalian target of rapamycin is a therapeutic target for murine ovarian endometrioid adenocarcinomas with dysregulated Wnt/beta‐catenin and PTEN. PLoS One 2011; 6: e20715.
dc.identifier.citedreferenceChandler RL, Damrauer JS, Raab JR, et al. Coexistent ARID1A‐PIK3CA mutations promote ovarian clear‐cell tumorigenesis through pro‐tumorigenic inflammatory cytokine signalling. Nat Commun 2015; 6: 6118.
dc.identifier.citedreferencevan der Horst PH, van der Zee M, Heijmans‐Antonissen C, et al. A mouse model for endometrioid ovarian cancer arising from the distal oviduct. Int J Cancer 2014; 135: 1028 – 1037.
dc.identifier.citedreferenceQuinn BA, Brake T, Hua X, et al. Induction of ovarian leiomyosarcomas in mice by conditional inactivation of Brca1 and p53. PLoS One 2009; 4: e8404.
dc.identifier.citedreferenceClark‐Knowles KV, Senterman MK, Collins O, et al. Conditional inactivation of Brca1, p53 and Rb in mouse ovaries results in the development of leiomyosarcomas. PLoS One 2009; 4: e8534.
dc.identifier.citedreferencePerets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high‐grade serous ovarian cancer in brca;tp53;pten models. Cancer Cell 2013; 24: 751 – 765.
dc.identifier.citedreferenceEddie SL, Quartuccio SM, Oh E, et al. Tumorigenesis and peritoneal colonization from fallopian tube epithelium. Oncotarget 2015; 6: 20500 – 20512.
dc.identifier.citedreferenceFlesken‐Nikitin A, Hwang CI, Cheng CY, et al. Ovarian surface epithelium at the junction area contains a cancer‐prone stem cell niche. Nature 2013; 495: 241 – 245.
dc.identifier.citedreferenceNg A, Tan S, Singh G, et al. Lgr5 marks stem/progenitor cells in ovary and tubal epithelia. Nat Cell Biol 2014; 16: 745 – 757.
dc.identifier.citedreferenceFeng Y, Sakamoto N, Wu R, et al. Tissue‐specific effects of reduced beta‐catenin expression on adenomatous polyposis coli mutation‐instigated tumorigenesis in mouse colon and ovarian epithelium. PLoS Genet 2015; 11: e1005638.
dc.identifier.citedreferenceNatraj U, Bhatt P, Vanage G, et al. Overexpression of monkey oviductal protein: purification and characterization of recombinant protein and its antibodies. Biol Reprod 2002; 67: 1897 – 1906.
dc.identifier.citedreferenceBuhi WC. Characterization and biological roles of oviduct‐specific, oestrogen‐dependent glycoprotein. Reproduction 2002; 123: 355 – 362.
dc.identifier.citedreferenceMiyoshi I, Takahashi K, Kon Y, et al. Mouse transgenic for murine oviduct‐specific glycoprotein promoter‐driven simian virus 40 large T‐antigen: tumor formation and its hormonal regulation. Mol Reprod Dev 2002; 63: 168 – 176.
dc.identifier.citedreferenceSherman‐Baust CA, Kuhn E, Valle BL, et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high‐grade serous carcinoma development. J Pathol 2014; 233: 228 – 237.
dc.identifier.citedreferenceKobel M, Kalloger SE, Lee S, et al. Biomarker‐based ovarian carcinoma typing: a histologic investigation in the ovarian tumor tissue analysis consortium. Cancer Epidemiol Biomarkers Prev 2013; 22: 1677 – 1686.
dc.identifier.citedreferenceSeidman JD, Horkayne‐Szakaly I, Haiba M, et al. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol 2004; 23: 41 – 44.
dc.identifier.citedreferenceGilks CB, Ionescu DN, Kalloger SE, et al. Tumor cell type can be reproducibly diagnosed and is of independent prognostic significance in patients with maximally debulked ovarian carcinoma. Hum Pathol 2008; 39: 1239 – 1251.
dc.identifier.citedreferenceShih IeM, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol 2004; 164: 1511 – 1518.
dc.identifier.citedreferenceKurman RJ, Shih IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int J Gynecol Pathol 2008; 27: 151 – 160.
dc.identifier.citedreferenceBraicu EI, Sehouli J, Richter R, et al. Role of histological type on surgical outcome and survival following radical primary tumour debulking of epithelial ovarian, fallopian tube and peritoneal cancers. Br J Cancer 2011; 105: 1818 – 1824.
dc.identifier.citedreferenceDinulescu DM, Ince TA, Quade BJ, et al. Role of K‐ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat Med 2005; 11: 63 – 70.
dc.identifier.citedreferenceGuan B, Rahmanto YS, Wu RC, et al. Roles of deletion of Arid1a, a tumor suppressor, in mouse ovarian tumorigenesis. J Natl Cancer Inst 2014; 106.
dc.identifier.citedreferenceWu R, Hendrix‐Lucas N, Kuick R, et al. Mouse model of human ovarian endometrioid adenocarcinoma based on somatic defects in the Wnt/B‐catenin and PI3K/Pten signaling pathways. Cancer Cell 2007; 11: 321 – 333.
dc.identifier.citedreferenceMcConechy MK, Ding J, Senz J, et al. Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol 2014; 27: 128 – 134.
dc.identifier.citedreferenceKuhn E, Kurman RJ, Shih IM. Ovarian cancer is an imported disease: fact or fiction? Curr Obstet Gynecol Rep 2012; 1: 1 – 9.
dc.identifier.citedreferenceKurman RJ, Shih Ie M. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer – shifting the paradigm. Hum Pathol 2011; 42: 918 – 931.
dc.identifier.citedreferenceRorat E, Wallach RC. Endometrioid carcinoma of the fallopian tube: pathology and clinical outcome. Int J Gynaecol Obstet 1990; 32: 163 – 167.
dc.identifier.citedreferenceAlvarado‐Cabrero I, Young RH, Vamvakas EC, et al. Carcinoma of the fallopian tube: a clinicopathological study of 105 cases with observations on staging and prognostic factors. Gynecol Oncol 1999; 72: 367 – 379.
dc.identifier.citedreferenceHuang W, Zhao Y, Zhao J, et al. Endometrioid carcinoma of the fallopian tube resembling an adnexal tumor of probable Wolffian origin: a case of report and review of the literature. Pathol Res Pract 2010; 206: 180 – 184.
dc.identifier.citedreferenceNavani SS, Alvarado‐Cabrero I, Young RH, et al. Endometrioid carcinoma of the fallopian tube: a clinicopathologic analysis of 26 cases. Gynecol Oncol 1996; 63: 371 – 378.
dc.identifier.citedreferenceAviles M, Gutierrez‐Adan A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? Mol Hum Reprod 2010; 16: 896 – 906.
dc.identifier.citedreferenceCulton LK, Deavers MT, Silva EG, et al. Endometrioid carcinoma simultaneously involving the uterus and the fallopian tube: a clinicopathologic study of 13 cases. Am J Surg Pathol 2006; 30: 844 – 849.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.