Show simple item record

MESSENGER observations of cusp plasma filaments at Mercury

dc.contributor.authorPoh, Gangkai
dc.contributor.authorSlavin, James A.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorImber, Suzanne M.
dc.contributor.authorGershman, Daniel J.
dc.contributor.authorSun, Wei‐jie
dc.contributor.authorAnderson, Brian J.
dc.contributor.authorKorth, Haje
dc.contributor.authorZurbuchen, Thomas H.
dc.contributor.authorMcNutt, Ralph L.
dc.contributor.authorSolomon, Sean C.
dc.date.accessioned2016-11-18T21:24:15Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09
dc.identifier.citationPoh, Gangkai; Slavin, James A.; Jia, Xianzhe; DiBraccio, Gina A.; Raines, Jim M.; Imber, Suzanne M.; Gershman, Daniel J.; Sun, Wei‐jie ; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; McNutt, Ralph L.; Solomon, Sean C. (2016). "MESSENGER observations of cusp plasma filaments at Mercury." Journal of Geophysical Research: Space Physics 121(9): 8260-8285.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134479
dc.description.abstractThe MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft while in orbit about Mercury observed highly localized, ~3â sâ long reductions in the dayside magnetospheric magnetic field, with amplitudes up to 90% of the ambient intensity. These magnetic field depressions are termed cusp filaments because they were observed from just poleward of the magnetospheric cusp to midlatitudes, i.e., ~55° to 85°N. We analyzed 345 highâ and lowâ altitude cusp filaments identified from MESSENGER magnetic field data to determine their physical properties. Minimum variance analysis indicates that most filaments resemble cylindrical flux tubes within which the magnetic field intensity decreases toward its central axis. If the filaments move over the spacecraft at an estimated magnetospheric convection speed of ~35â km/s, then they have a typical diameter of ~105â km or ~7â gyroradii for 1â keVâ H+ ions in a 300â nT magnetic field. During these events, MESSENGER’s Fast Imaging Plasma Spectrometer observed H+ ions with magnetosheathâ like energies. MESSENGER observations during the spacecraft’s final lowâ altitude campaign revealed that these cusp filaments likely extend down to Mercury’s surface. We calculated an occurrenceâ rateâ normalized integrated particle precipitation rate onto the surface from all filaments of (2.70â ±â 0.09)â à â 1025â sâ 1. This precipitation rate is comparable to published estimates of the total precipitation rate in the largerâ scale cusp. Overall, the MESSENGER observations analyzed here suggest that cusp filaments are the magnetospheric extensions of the flux transfer events that form at the magnetopause as a result of localized magnetic reconnection.Key PointsCusp filaments form as plasma is injected down flux tubes at the magnetopause by localized reconnectionResults indicate that cusp filaments map to flux transfer events at the magnetopauseThis result has important implications for surface sputtering and space weathering in the cusp region at Mercury
dc.publisherWiley Periodicals, Inc.
dc.publisherEuropean Space Agency
dc.subject.othercusp filaments
dc.subject.otherreconnection
dc.subject.otherMercury
dc.titleMESSENGER observations of cusp plasma filaments at Mercury
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134479/1/jgra52773.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134479/2/jgra52773_am.pdf
dc.identifier.doi10.1002/2016JA022552
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a fluxâ transferâ event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, Y. C. Wang, and K. H. Schatten ( 1974 ), Observations of magnetic field near Mercury: Preliminary results from Mariner 10, Science, 185, 151 â 159.
dc.identifier.citedreferenceNewell, P. T., and C.â I. Meng ( 1987 ), Cusp width and B z: Observations and a conceptual model, J. Geophys. Res., 92, 13,673 â 13,678, doi: 10.1029/JA092iA12p13673.
dc.identifier.citedreferencePaschmann, G., I. Papamastorakis, W. Baumjohann, N. Sckopke, C. W. Carlson, B. U. à . Sonnerup, and H. Lühr ( 1986 ), The magnetopause for large magnetic shear: AMPTE/IRM observations, J. Geophys. Res., 91, 11,099 â 11,115, doi: 10.1029/JA091iA10p11099.
dc.identifier.citedreferencePhan, T. D., J. T. Gosling, G. Paschmann, C. Pasma, J. F. Drake, M. Oieroset, D. Larson, R. P. Lin, and M. S. Davis ( 2010 ), The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from solar wind observations, Astrophys. J., 719, L199 â L203.
dc.identifier.citedreferenceRaeder, J. ( 2006 ), Flux transfer events: 1. Generation mechanism for strong southward IMF, Ann. Geophys., 24, 381 â 392, doi: 10.5194/angeo-24-381-2006.
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, G. Gloeckler, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587 â 6602, doi: 10.1002/2014JA020120.
dc.identifier.citedreferenceRussell, C. T., and R. C. Elphic ( 1978 ), Initial ISEE magnetometer results: Magnetopause observations, Space Sci. Res., 22, 681 â 715.
dc.identifier.citedreferenceSarantos, M., P. H. Reiff, T. W. Hill, R. M. Killen, and A. L. Urquhart ( 2001 ), A B X â interconnected magnetosphere model for Mercury, Planet. Space Sci., 49, 1629 â 1635.
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind standâ off distance at Mercury, J. Geophys. Res., 84, 2076 â 2082, doi: 10.1029/JA084iA05p02076.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 324, 606 â 610.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of large flux transfer events at Mercury, Geophys. Res. Lett., 37, L02105, doi: 10.1029/2009GL041485.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 â 8116, doi: 10.1002/2014JA020319.
dc.identifier.citedreferenceSmith, D. E., et al. ( 2012 ), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214 â 217.
dc.identifier.citedreferenceSmith, M. F., and M. Lockwood ( 1990 ), The pulsating cusp, Geophys. Res. Lett., 17, 1069 â 1072, doi: 10.1029/GL017i008p01069.
dc.identifier.citedreferenceSonnerup, B. U. Ã ., and L. J. Cahill Jr. ( 1967 ), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171 â 183, doi: 10.1029/JZ072i001p00171.
dc.identifier.citedreferenceSonnerup, B. U. Ã ., and M. Scheible ( 1998 ), Minimum and maximum variance analysis, in Analysis Methods for Multiâ Spacecraft Data, ISSI Scientific Report SRâ 001, edited by G. Paschmann and P. W. Daly, pp. 185 â 220, European Space Agency, Noordwijk, Netherlands.
dc.identifier.citedreferenceSouthwood, D. J. ( 1987 ), The ionospheric signature of flux transfer events, J. Geophys. Res., 92, 3207 â 3213, doi: 10.1029/JA092iA04p03207.
dc.identifier.citedreferenceStevens, M. L., and J. C. Kasper ( 2007 ), A scaleâ free analysis of magnetic holes at 1â AU, J. Geophys. Res., 112, A05109, doi: 10.1029/2006JA012116.
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012 ), MESSENGER orbital observations of largeâ amplitude Kelvinâ Helmholtz waves at Mercury’s magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268.
dc.identifier.citedreferenceSwisdak, M., M. Opher, J. F. Drake, and F. A. Bibi ( 2010 ), The vector direction of the interstellar magnetic field outside the heliosphere, Astrophys. J., 710, 1769 â 1775, doi: 10.1088/0004-637X/710/2/1769.
dc.identifier.citedreferenceTrenchi, L., M. F. Marcucci, G. Pallocchia, G. Consolini, M. B. Bavassano Cattaneo, A. M. Di Lellis, H. Rème, L. Kistler, C. M. Carr, and J. B. Cao ( 2008 ), Occurrence of reconnection jets at the dayside magnetopause: Double star observations, J. Geophys. Res., 113, A07S10, doi: 10.1029/2007JA012774.
dc.identifier.citedreferenceTurner, J. M., L. F. Burlaga, N. F. Ness, and J. F. Lemaire ( 1977 ), Magnetic holes in the solar wind, J. Geophys. Res., 82, 1921 â 1924, doi: 10.1029/JA082i013p01921.
dc.identifier.citedreferenceWalsh, B. M., J. C. Foster, P. J. Erickson, and D. G. Sibeck ( 2014 ), Simultaneous groundâ and spaceâ based observations of the plasmaspheric plume and reconnection, Science, 343, 1122 â 1125, doi: 10.1126/science.1247212.
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury’s northern cusp with MESSENGER’s Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 â 2227, doi: 10.1002/jgra.50237.
dc.identifier.citedreferenceWinslow, R. M., et al. ( 2014 ), Mercury’s surface magnetic field determined from protonâ reflection magnetometry, Geophys. Res. Lett., 41, 4463 â 4470, doi: 10.1002/2014GL060258.
dc.identifier.citedreferenceWinterhalter, D. M., M. Neugebauer, B. E. Goldstein, E. J. Smith, S. J. Bame, and A. Balogh ( 1994 ), Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirrorâ mode structures, J. Geophys. Res., 99, 23,371 â 23,381, doi: 10.1029/94JA01977.
dc.identifier.citedreferenceXiao, C. J., Z. Y. Pu, Z. W. Ma, S. Y. Fu, Z. Y. Huang, and Q. G. Zong ( 2004 ), Inferring of flux rope orientation with the minimum variance analysis technique, J. Geophys. Res., 109, A11218, doi: 10.1029/2004JA010594.
dc.identifier.citedreferenceZhang, H., et al. ( 2010 ), Evidence that crater flux transfer events are initial stages of typical flux transfer events, J. Geophys. Res., 115, A08229, doi: 10.1029/2009JA015013.
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 â 39, doi: 10.1016/j.icarus.2010.01.024.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 â 450, doi: 10.1007/s11214-007-9246-7.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. ( 2008 ), The structure of Mercury’s magnetic field from MESSENGER’s first flyby, Science, 321, 82 â 85.
dc.identifier.citedreferenceAnderson, B. J., J. A. Slavin, H. Korth, S. A. Boardsen, T. H. Zurbuchen, J. M. Raines, G. Gloeckler, R. L. McNutt Jr., and S. C. Solomon ( 2011 ), The dayside magnetospheric boundary layer at Mercury, Planet. Space Sci., 59, 2037 â 2050.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, J. A. Slavin, R. M. Winslow, R. J. Phillips, R. L. McNutt Jr., and S. C. Solomon ( 2014 ), Steadyâ state fieldâ aligned currents at Mercury, Geophys. Res. Lett., 41, 7444 â 7452, doi: 10.1002/2014GL061677.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 â 556, doi: 10.1007/s11214-007-9272-5.
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvinâ Helmholtz waves along the duskâ side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.
dc.identifier.citedreferenceBurch, J. L., P. H. Reiff, R. A. Heelis, J. D. Winningham, W. B. Hanson, C. Gurgiolo, J. D. Menietti, R. A. Hoffman, and J. N. Barfield ( 1982 ), Plasma injection and transport in the midlatitude polar cusp, Geophys. Res. Lett., 9, 921 â 924, doi: 10.1029/GL009i009p00921.
dc.identifier.citedreferenceCowley, S. W. H. ( 1984 ), Solar wind control of magnetospheric convection, in Achievements of the International Magnetospheric Study (IMS), Spec. Pub. 217, pp. 483 â 494, European Space Agency, Noordwijk, Netherlands.
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 â 1008, doi: 10.1002/jgra.50123.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015 ), First observations of Mercury’s plasma mantle by MESSENGER, Geophys. Res. Lett., 42, 9666 â 9675, doi: 10.1002/2015GL065805.
dc.identifier.citedreferenceDomingue, D. L., et al. ( 2014 ), Mercury’s weatherâ beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies, Space Sci. Rev., 181, 121 â 214.
dc.identifier.citedreferenceElphic, R. C., and C. T. Russell ( 1983 ), Magnetic flux ropes in the Venus ionosphere: Observations and models, J. Geophys. Res., 88, 58 â 72, doi: 10.1029/JA088iA01p00058.
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 â 7199, doi: 10.1002/2013JA019244.
dc.identifier.citedreferenceGershman, D. J., J. M. Raines, J. A. Slavin, T. H. Zurbuchen, T. Sundberg, S. A. Boardsen, B. J. Anderson, H. Korth, and S. C. Solomon ( 2015 ), MESSENGER observations of multiscale Kelvinâ Helmholtz vortices at Mercury, J. Geophys. Res. Space Physics, 120, 4354 â 4368, doi: 10.1002/2014JA020903.
dc.identifier.citedreferenceGershman, D. J., J. C. Dorelli, G. A. DiBraccio, J. M. Raines, J. A. Slavin, G. Poh, and T. H. Zurbuchen ( 2016 ), Ionâ scale structure in Mercury’s magnetopause reconnection diffusion region, Geophys. Res. Lett., 43, 5935 â 5942, doi: 10.1002/2016GL069163.
dc.identifier.citedreferenceHill, T. W., and P. H. Reiff ( 1977 ), Evidence of magnetospheric cusp proton acceleration by magnetic merging at the dayside magnetopause, J. Geophys. Res., 82, 3623 â 3628, doi: 10.1029/JA082i025p03623.
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, R. L. McNutt Jr., and S. C. Solomon ( 2014 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613 â 5623, doi: 10.1002/2014JA019884.
dc.identifier.citedreferenceJia, X., J. A. Slavin, T. I. Gombosi, L. K. S. Daldorff, G. Toth, and B. van der Holst ( 2015 ), Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction, J. Geophys. Res. Space Physics, 120, 4763 â 4775, doi: 10.1002/2015JA021143.
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.
dc.identifier.citedreferenceKillen, R. M., and W.â H. Ip ( 1999 ), The surfaceâ bounded atmospheres of Mercury and the Moon, Rev. Geophys., 37, 361 â 406, doi: 10.1029/1999RG900001.
dc.identifier.citedreferenceLee, L. C., and Z. F. Fu ( 1985 ), A theory of magnetic flux transfer at the Earth’s magnetopause, Geophys. Res. Lett., 12, 105 â 108, doi: 10.1029/GL012i002p00105.
dc.identifier.citedreferenceLiljeblad, E., T. Sundberg, T. Karlsson, and A. Kullen ( 2014 ), Statistical investigation of Kelvinâ Helmholtz waves at the magnetopause of Mercury, J. Geophys. Res. Space Physics, 119, 9670 â 9683, doi: 10.1002/2014JA020614.
dc.identifier.citedreferenceLockwood, M., and H. C. Carlson ( 1992 ), Production of polar cap electron density patches by transient magnetopause reconnection, Geophys. Res. Lett., 19, 1731 â 1734, doi: 10.1029/92GL01993.
dc.identifier.citedreferenceLockwood, M., and M. F. Smith ( 1989 ), Lowâ altitude signatures of the cusp and flux transfer events, Geophys. Res. Lett., 16, 879 â 882, doi: 10.1029/GL016i008p00879.
dc.identifier.citedreferenceMa, Z. W., A. Otto, and L. C. Lee ( 1994 ), Core magnetic field enhancement in single X line, multiple X line and patchy reconnection, J. Geophys. Res., 99, 6125 â 6136, doi: 10.1029/93JA03480.
dc.identifier.citedreferenceMangano, V., S. Massetti, A. Milillo, C. Plainaki, S. Orsini, R. Rispoli, and F. Leblanc ( 2015 ), THEMIS Na exosphere observations of Mercury and their correlation with inâ situ magnetic field measurements by MESSENGER, Planet. Space Sci., 115, 102 â 109, doi: 10.1016/j.pss.2015.04.001.
dc.identifier.citedreferenceMassetti, S., S. Orsini, A. Milillo, and A. Mura ( 2007 ), Modelling Mercury’s magnetosphere and plasma entry through the dayside magnetopause, Planet. Space Sci., 55, 1557 â 1568.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.