Show simple item record

A statistical survey of ultralow‐frequency wave power and polarization in the Hermean magnetosphere

dc.contributor.authorJames, Matthew K.
dc.contributor.authorBunce, Emma J.
dc.contributor.authorYeoman, Timothy K.
dc.contributor.authorImber, Suzanne M.
dc.contributor.authorKorth, Haje
dc.date.accessioned2016-11-18T21:24:25Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09
dc.identifier.citationJames, Matthew K.; Bunce, Emma J.; Yeoman, Timothy K.; Imber, Suzanne M.; Korth, Haje (2016). "A statistical survey of ultralow‐frequency wave power and polarization in the Hermean magnetosphere." Journal of Geophysical Research: Space Physics 121(9): 8755-8772.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134487
dc.description.abstractWe present a statistical survey of ultralow‐frequency wave activity within the Hermean magnetosphere using the entire MErcury Surface, Space ENvironment, GEochemistry, and Ranging magnetometer data set. This study is focused upon wave activity with frequencies <0.5 Hz, typically below local ion gyrofrequencies, in order to determine if field line resonances similar to those observed in the terrestrial magnetosphere may be present. Wave activity is mapped to the magnetic equatorial plane of the magnetosphere and to magnetic latitude and local times on Mercury using the KT14 magnetic field model. Wave power mapped to the planetary surface indicates the average location of the polar cap boundary. Compressional wave power is dominant throughout most of the magnetosphere, while azimuthal wave power close to the dayside magnetopause provides evidence that interactions between the magnetosheath and the magnetopause such as the Kelvin‐Helmholtz instability may be driving wave activity. Further evidence of this is found in the average wave polarization: left‐handed polarized waves dominate the dawnside magnetosphere, while right‐handed polarized waves dominate the duskside. A possible field line resonance event is also presented, where a time‐of‐flight calculation is used to provide an estimated local plasma mass density of ∼240 amu cm−3.Key PointsEvidence that the Kelvin‐Helmholtz instability is driving Hermean ULF wave activityObservations suggest that Earth‐like field line resonance is possible at MercuryWave power mapped to Mercury’s surface reveals the likely average polar cap boundary location
dc.publisherPergamon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMercury
dc.subject.otherMESSENGER
dc.subject.otherwaves
dc.subject.otherULF
dc.titleA statistical survey of ultralow‐frequency wave power and polarization in the Hermean magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134487/1/jgra52944.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134487/2/jgra52944_am.pdf
dc.identifier.doi10.1002/2016JA023103
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587 – 6602, doi: 10.1002/2014JA020120.
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59 ( 15 ), 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012JA018073.
dc.identifier.citedreferenceRussell, C. T. ( 1989 ), ULF waves in the Mercury magnetosphere, Geophys. Res. Lett., 16 ( 11 ), 1253 – 1256, doi: 10.1029/GL016i011p01253.
dc.identifier.citedreferenceSarantos, M., P. H. Reiff, T. W. Hill, R. M. Killen, and A. L. Urquhart ( 2001 ), A B x ‐interconnected magnetosphere model for Mercury, Planet. Space Sci., 49 ( 14‐15 ), 1629 – 1635, doi: 10.1016/S0032‐0633(01)00100‐3.
dc.identifier.citedreferenceSchriver, D., et al. ( 2011 ), Quasi‐trapped ion and electron populations at Mercury, Geophys. Res. Lett., 38, L23103, doi: 10.1029/2011GL049629.
dc.identifier.citedreferenceScoffield, H., T. Yeoman, D. Wright, S. Milan, A. Wright, and R. Strangeway ( 2007 ), An investigation of the field‐aligned currents associated with a large‐scale ULF wave in the morning sector, Planet. Space Sci., 55 ( 6 ), 770 – 791, doi: 10.1016/j.pss.2006.04.040.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22, 483 – 491, doi: 10.1016/0032‐0633(74)90078‐6.
dc.identifier.citedreferenceSouthwood, D. J. ( 1976 ), A general approach to low‐frequency instability in the ring current plasma, J. Geophys. Res., 81 ( 19 ), 3340 – 3348, doi: 10.1029/JA081i019p03340.
dc.identifier.citedreferenceSouthwood, D. J. ( 1997 ), The magnetic field of Mercury, Planet. Space Sci., 45 ( 1 ), 113 – 117, doi: 10.1016/S0032‐0633(96)00105‐5.
dc.identifier.citedreferenceSouthwood, D. J., J. W. Dungey, and R. J. Etherington ( 1969 ), Bounce resonant interaction between pulsations and trapped particles, Planet. Space Sci., 17, 349 – 361, doi: 10.1016/0032‐0633(69)90068‐3.
dc.identifier.citedreferenceSundberg, T., S. Boardsen, J. Slavin, L. Blomberg, and H. Korth ( 2010 ), The Kelvin‐Helmholtz instability at Mercury: An assessment, Planet. Space Sci., 58 ( 11 ), 1434 – 1441, doi: 10.1016/j.pss.2010.06.008.
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012a ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury’s magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268.
dc.identifier.citedreferenceSundberg, T., et al. ( 2012b ), MESSENGER observations of dipolarization events in Mercury’s magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.
dc.identifier.citedreferenceTakahashi, K., R. E. Denton, M. Hirahara, K. Min, S.‐i. Ohtani, and E. Sanchez ( 2014 ), Solar cycle variation of plasma mass density in the outer magnetosphere: Magnetoseismic analysis of toroidal standing Alfvén waves detected by Geotail, J. Geophys. Res. Space Physics, 119, 8338 – 8356, doi: 10.1002/2014JA020274.
dc.identifier.citedreferenceTamao, T. ( 1965 ), Transmission and coupling resonance of hydromagnetic disturbances in the non‐uniform Earth’s magnetosphere, Sci. Rep. Tohoku Univ., Ser., 17 ( 2 ), 43 – 72.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2013 ), Data‐based modelling of the Earth’s dynamic magnetosphere: A review, Ann. Geophys., 31 ( 10 ), 1745 – 1772, doi: 10.5194/angeo‐31‐1745‐2013.
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.
dc.identifier.citedreferenceYagi, M., K. Seki, Y. Matsumoto, D. C. Delcourt, and F. Leblanc ( 2010 ), Formation of a sodium ring in Mercury’s magnetosphere, J. Geophys. Res., 115, A10253, doi: 10.1029/2009JA015226.
dc.identifier.citedreferenceYeoman, T. K., L. J. Baddeley, R. S. Dhillon, T. R. Robinson, and D. M. Wright ( 2008 ), Bistatic observations of large and small scale ULF waves in SPEAR‐induced HF coherent backscatter, Ann. Geophys., 26, 2253 – 2263, doi: 10.5194/angeo‐26‐2253‐2008.
dc.identifier.citedreferenceYeoman, T. K., D. Y. Klimushkin, and P. N. Mager ( 2010 ), Intermediate‐m ULF waves generated by substorm injection: A case study, Ann. Geophys., 28, 1499 – 1509, doi: 10.5194/angeo‐28‐1499‐2010.
dc.identifier.citedreferenceZurbuchen, T. H., G. Gloeckler, J. C. Cain, S. E. Lasley, and W. Shanks ( 1998 ), Low‐weight plasma instrument to be used in the inner heliosphere, Proc. SPIE, 3442, 217 – 224, doi: 10.1117/12.330260.
dc.identifier.citedreferenceAbles, S. T., B. J. Fraser, C. L. Waters, D. A. Neudegg, and R. J. Morris ( 1998 ), Monitoring cusp/cleft topology using Pc5 ULF waves, Geophys. Res. Lett., 25 ( 9 ), 1507 – 1510, doi: 10.1029/98GL00848.
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, S. Yu. Bobrovnikov, J. A. Slavin, and M. Sarantos ( 2008 ), Paraboloid model of Mercury’s magnetosphere, J. Geophys. Res., 113, A12210, doi: 10.1029/2008JA013368.
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209 ( 1 ), 23 – 39, doi: 10.1016/j.icarus.2010.01.024.
dc.identifier.citedreferenceAnderson, B., M. Acuña, D. Lohr, J. Scheifele, A. Raval, H. Korth, and J. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131 ( 1–4 ), 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt, J. M. Raines, and T. H. Zurbuchen ( 2011a ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333 ( 6051 ), 1859 – 1862, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceAnderson, B. J., J. A. Slavin, H. Korth, S. A. Boardsen, T. H. Zurbuchen, J. M. Raines, G. Gloeckler, R. L. McNutt, and S. C. Solomon ( 2011b ), The dayside magnetospheric boundary layer at Mercury, Planet. Space Sci., 59 ( 15 ), 2037 – 2050, doi: 10.1016/j.pss.2011.01.010.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt ( 2012 ), Low‐degree structure in Mercury’s planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131 ( 1 ), 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.
dc.identifier.citedreferenceBaumjohann, W., et al. ( 2006 ), The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions, Adv. Space Res., 38, 604 – 609, doi: 10.1016/j.asr.2005.05.117.
dc.identifier.citedreferenceBenna, M., et al. ( 2010 ), Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, Icarus, 209 ( 1 ), 3 – 10, doi: 10.1016/j.icarus.2009.11.036.
dc.identifier.citedreferenceBlomberg, L. G. ( 1997 ), Mercury’s magnetosphere, exosphere and surface: Low‐frequency field and wave measurements as a diagnostic tool, Planet. Space Sci., 45 ( 1 ), 143 – 148, doi: 10.1016/S0032‐0633(96)00092‐X.
dc.identifier.citedreferenceBlomberg, L. G., J. A. Cumnock, K. H. Glassmeier, and R. A. Treumann ( 2007 ), Plasma waves in the Hermean magnetosphere, Space Sci. Rev., 132 ( 2–4 ), 575 – 591, doi: 10.1007/s11214‐007‐9282‐3.
dc.identifier.citedreferenceBoardsen, S. A., and J. A. Slavin ( 2007 ), Search for pick‐up ion generated Na + cyclotron waves at Mercury, Geophys. Res. Lett., 34, L22106, doi: 10.1029/2007GL031504.
dc.identifier.citedreferenceBoardsen, S. A., B. J. Anderson, M. H. Acuña, J. A. Slavin, H. Korth, and S. C. Solomon ( 2009a ), Narrow‐band ultra‐low‐frequency wave observations by MESSENGER during its January 2008 flyby through Mercury’s magnetosphere, Geophys. Res. Lett., 36, L01104, doi: 10.1029/2008GL036034.
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, and S. C. Solomon ( 2009b ), Comparison of ultra‐low‐frequency waves at Mercury under northward and southward IMF, Geophys. Res. Lett., 36, L18106, doi: 10.1029/2009GL039525.
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.
dc.identifier.citedreferenceBoardsen, S. A., J. A. Slavin, B. J. Anderson, H. Korth, D. Schriver, and S. C. Solomon ( 2012 ), Survey of coherent ∼1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations, J. Geophys. Res., 117, A00M05, doi: 10.1029/2012JA017822.
dc.identifier.citedreferenceBoardsen, S. A., E.‐H. Kim, J. M. Raines, J. A. Slavin, D. J. Gershman, B. J. Anderson, H. Korth, T. Sundberg, D. Schriver, and P. Travnicek ( 2015 ), Interpreting ∼1 Hz magnetic compressional waves in Mercury’s inner magnetosphere in terms of propagating ion‐Bernstein waves, J. Geophys. Res. Space Physics, 120, 4213 – 4228, doi: 10.1002/2014JA020910.
dc.identifier.citedreferenceBorn, M., and E. Wolf ( 1980 ), Chapter 1—Basic properties of the electromagnetic field, in Principles of Optics 6th (Corrected) edition, edited by M. Born and E. Wolf, pp. 1 – 70, Pergamon Press, Oxford, U. K., doi: 10.1016/B978‐0‐08‐026482‐0.50008‐6.
dc.identifier.citedreferenceBuchsbaum, S. J. ( 1960 ), Resonance in a plasma with two ion species, Phys. Fluids, 3 ( 3 ), 418 – 420, doi: 10.1063/1.1706052.
dc.identifier.citedreferenceChen, L., and A. Hasegawa ( 1974 ), A theory of long‐period magnetic pulsations: 1. Steady state excitation of field line resonance, J. Geophys. Res., 79 ( 7 ), 1024 – 1032, doi: 10.1029/JA079i007p01024.
dc.identifier.citedreferenceCheng, A., R. Johnson, S. Krimigis, and L. Lanzerotti ( 1987 ), Magnetosphere, exosphere, and surface of Mercury, Icarus, 71 ( 3 ), 430 – 440, doi: 10.1016/0019‐1035(87)90038‐8.
dc.identifier.citedreferenceChi, P. J., and C. T. Russell ( 2005 ), Travel‐time magnetoseismology: Magnetospheric sounding by timing the tremors in space, Geophys. Res. Lett., 32, L18108, doi: 10.1029/2005GL023441.
dc.identifier.citedreferenceDelcourt, D. C., S. Grimald, F. Leblanc, J.‐J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore ( 2003 ), A quantitative model of the planetary Na + contribution to Mercury’s magnetosphere, Ann. Geophys., 21 ( 8 ), 1723 – 1736, doi: 10.5194/angeo‐21‐1723‐2003.
dc.identifier.citedreferenceDenton, R. E., and D. L. Gallagher ( 2000 ), Determining the mass density along magnetic field lines from toroidal eigenfrequencies, J. Geophys. Res., 105 ( A12 ), 27,717 – 27,725, doi: 10.1029/1999JA000397.
dc.identifier.citedreferenceDungey, J. W. ( 1963 ), The structure of the exosphere or adventures in velocity space, in Geophysics: The Earth’s Environment, edited by C. Dewitt, pp. 505 – 550, Gordon and Breach, New York.
dc.identifier.citedreferenceEcher, E. ( 2010 ), Wavelet analysis of ULF waves in the Mercury’s magnetosphere, Rev. Bras. Geof., 28, 175 – 182, doi: 10.1590/S0102‐261X2010000200003.
dc.identifier.citedreferenceGlassmeier, K.‐H. ( 1997 ), The Hermean magnetosphere and its ionosphere‐magnetosphere coupling, Planet. Space Sci., 45 ( 1 ), 119 – 125, doi: 10.1016/S0032‐0633(96)00095‐5.
dc.identifier.citedreferenceGlassmeier, K.‐H., D. Klimushkin, C. Othmer, and P. Mager ( 2004 ), ULF waves at Mercury: Earth, the giants, and their little brother compared, Adv. Space Res., 33, 1875 – 1883, doi: 10.1016/j.asr.2003.04.047.
dc.identifier.citedreferenceGrosser, J., K.‐H. Glassmeier, and A. Stadelmann ( 2004 ), Induced magnetic field effects at planet Mercury, Planet. Space Sci., 52 ( 14 ), 1251 – 1260, doi: 10.1016/j.pss.2004.08.005.
dc.identifier.citedreferenceHughes, W. J., and D. J. Southwood ( 1976 ), An illustration of modification of geomagnetic pulsation structure by the ionosphere, J. Geophys. Res., 81 ( 19 ), 3241 – 3247, doi: 10.1029/JA081i019p03241.
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, R. L. McNutt, and S. C. Solomon ( 2014 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613 – 5623, doi: 10.1002/2014JA019884.
dc.identifier.citedreferenceIp, W.‐H. ( 1987 ), Dynamics of electrons and heavy ions in Mercury’s magnetosphere, Icarus, 71 ( 3 ), 441 – 447, doi: 10.1016/0019‐1035(87)90039‐X.
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.
dc.identifier.citedreferenceKim, E.‐H., and D.‐H. Lee ( 2003 ), Resonant absorption of ULF waves near the ion cyclotron frequency: A simulation study, Geophys. Res. Lett., 30 ( 24 ), 2240, doi: 10.1029/2003GL017918.
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, and D.‐H. Lee ( 2008 ), Resonant absorption of ULF waves at Mercury’s magnetosphere, J. Geophys. Res., 113, A11207, doi: 10.1029/2008JA013310.
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, D.‐H. Lee, and Y. S. Pyo ( 2013 ), Field‐line resonance structures in Mercury’s multi‐ion magnetosphere, Earth Planets Space, 65 ( 5 ), 447 – 451, doi: 10.5047/eps.2012.08.004.
dc.identifier.citedreferenceKim, E.‐H., J. R. Johnson, E. Valeo, and C. K. Phillips ( 2015 ), Global modeling of ULF waves at Mercury, Geophys. Res. Lett., 42, 5147 – 5154, doi: 10.1002/2015GL064531.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, M. H. Acuña, J. A. Slavin, N. A. Tsyganenko, S. C. Solomon, and R. L. McNutt ( 2004 ), Determination of the properties of Mercury’s magnetic field by the MESSENGER mission, Planet. Space Sci., 52 ( 8 ), 733 – 746, doi: 10.1016/j.pss.2003.12.008.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. Solomon, and R. L. McNutt ( 2014 ), Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations, J. Geophys. Res. Space Physics, 119, 2917 – 2932, doi: 10.1002/2013JA019567.
dc.identifier.citedreferenceKorth, H., N. A. Tsyganenko, C. L. Johnson, L. C. Philpott, B. J. Anderson, M. M. Al Asad, S. C. Solomon, and R. L. McNutt ( 2015 ), Modular model for Mercury’s magnetospheric magnetic field confined within the average observed magnetopause, J. Geophys. Res. Space Physics, 120, 4503 – 4518, doi: 10.1002/2015JA021022.
dc.identifier.citedreferenceLammer, H., and S. Bauer ( 1997 ), Mercury’s exosphere: Origin of surface sputtering and implications, Planet. Space Sci., 45 ( 1 ), 73 – 79, doi: 10.1016/S0032‐0633(96)00097‐9.
dc.identifier.citedreferenceLanzerotti, L. J., A. Shono, H. Fukunishi, and C. G. Maclennan ( 1999 ), Long‐period hydromagnetic waves at very high geomagnetic latitudes, J. Geophys. Res., 104 ( A12 ), 28,423 – 28,435, doi: 10.1029/1999JA900325.
dc.identifier.citedreferenceLeblanc, F., D. Delcourt, and R. E. Johnson ( 2003 ), Mercury’s sodium exosphere: Magnetospheric ion recycling, J. Geophys. Res., 108 ( E12 ), 5136, doi: 10.1029/2003JE002151.
dc.identifier.citedreferenceLuhmann, J. G., C. T. Russell, and N. A. Tsyganenko ( 1998 ), Disturbances in Mercury’s magnetosphere: Are the Mariner 10 “substorms” simply driven?, J. Geophys. Res., 103 ( A5 ), 9113 – 9119, doi: 10.1029/97JA03667.
dc.identifier.citedreferenceMathie, R. A., F. W. Menk, I. R. Mann, and D. Orr ( 1999 ), Discrete field line resonances and the Alfvén continuum in the outer magnetosphere, Geophys. Res. Lett., 26 ( 6 ), 659 – 662, doi: 10.1029/1999GL900104.
dc.identifier.citedreferenceMeans, J. D. ( 1972 ), Use of the three‐dimensional covariance matrix in analyzing the polarization properties of plane waves, J. Geophys. Res., 77 ( 28 ), 5551 – 5559, doi: 10.1029/JA077i028p05551.
dc.identifier.citedreferenceNewton, R., D. Southwood, and W. Hughes ( 1978 ), Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26 ( 3 ), 201 – 209, doi: 10.1016/0032‐0633(78)90085‐5.
dc.identifier.citedreferenceOgilvie, K. W., J. D. Scudder, V. M. Vasyliunas, R. E. Hartle, and G. L. Siscoe ( 1977 ), Observations at the planet Mercury by the Plasma Electron Experiment: Mariner 10, J. Geophys. Res., 82 ( 13 ), 1807 – 1824, doi: 10.1029/JA082i013p01807.
dc.identifier.citedreferenceOthmer, C., K.‐H. Glassmeier, and R. Cramm ( 1999 ), Concerning field line resonances in Mercury’s magnetosphere, J. Geophys. Res., 104 ( A5 ), 10,369 – 10,378, doi: 10.1029/1999JA900009.
dc.identifier.citedreferenceParal, J., and R. Rankin ( 2013 ), Dawn‐dusk asymmetry in the Kelvin‐Helmholtz instability at Mercury, Nat. Commun., 4 ( 1645 ), doi: 10.1038/ncomms2676.
dc.identifier.citedreferencePilipenko, V., V. Belakhovsky, M. J. Engebretson, A. Kozlovsky, and T. Yeoman ( 2015 ), Are dayside long‐period pulsations related to the cusp?, Ann. Geophys., 33 ( 3 ), 395 – 404, doi: 10.5194/angeo‐33‐395‐2015.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.