Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages
dc.contributor.author | Michalski, Megan N. | |
dc.contributor.author | Koh, Amy J. | |
dc.contributor.author | Weidner, Savannah | |
dc.contributor.author | Roca, Hernan | |
dc.contributor.author | McCauley, Laurie K. | |
dc.date.accessioned | 2016-11-18T21:24:29Z | |
dc.date.available | 2018-02-01T14:56:11Z | en |
dc.date.issued | 2016-12 | |
dc.identifier.citation | Michalski, Megan N.; Koh, Amy J.; Weidner, Savannah; Roca, Hernan; McCauley, Laurie K. (2016). "Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages." Journal of Cellular Biochemistry 117(12): 2697-2706. | |
dc.identifier.issn | 0730-2312 | |
dc.identifier.issn | 1097-4644 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/134491 | |
dc.description.abstract | Apoptosis occurs at an extraordinary rate in the human body and the effective clearance of dead cells (efferocytosis) is necessary to maintain homeostasis and promote healing, yet the contribution and impact of this process in bone is unclear. Bone formation requires that bone marrow stromal cells (BMSCs) differentiate into osteoblasts which direct matrix formation and either become osteocytes, bone lining cells, or undergo apoptosis. A series of experiments were performed to identify the regulators and consequences of macrophage efferocytosis of apoptotic BMSCs (apBMSCs). Bone marrow derived macrophages treated with the anti‐inflammatory cytokine interleukin‐10 (IL‐10) exhibited increased efferocytosis of apBMSCs compared to vehicle treated macrophages. Additionally, IL‐10 increased anti‐inflammatory M2‐like macrophages (CD206+), and further enhanced efferocytosis within the CD206+ population. Stattic, an inhibitor of STAT3 phosphorylation, reduced the IL‐10‐mediated shift in M2 macrophage polarization and diminished IL‐10‐directed efferocytosis of apBMSCs by macrophages implicating the STAT3 signaling pathway. Cell culture supernatants and RNA from macrophages co‐cultured with apoptotic bone cells showed increased secretion of monocyte chemotactic protein 1/chemokine (C‐C motif) ligand 2 (MCP‐1/CCL2) and transforming growth factor beta 1 (TGF‐β1) and increased ccl2 gene expression. In conclusion, IL‐10 increases M2 macrophage polarization and enhances macrophage‐mediated engulfment of apBMSCs in a STAT3 phosphorylation‐dependent manner. After engulfment of apoptotic bone cells, macrophages secrete TGF‐β1 and MCP‐1/CCL2, factors which fuel the remodeling process. A better understanding of the role of macrophage efferocytosis as it relates to normal and abnormal bone turnover will provide vital information for future therapeutic approaches to treat bone related diseases. J. Cell. Biochem. 117: 2697–2706, 2016. © 2016 Wiley Periodicals, Inc.The process of efferocytosis (clearance of apoptotic cells) has been characterized in various tissues but the role of efferocytosis in the bone microenvironment is unclear. Bone marrow macrophage efferocytosis of apoptotic osteoblastic cells was enhanced by interleukin‐10 in a STAT‐3 dependent manner and resulted in increased production of TGF‐β1 and CCL‐2. The process of efferocytosis is likely important in bone remodeling and osseous wound healing. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | APOPTOSIS | |
dc.subject.other | EFFEROCYTOSIS | |
dc.subject.other | BONE BIOLOGY | |
dc.subject.other | OSTEOBLASTS | |
dc.subject.other | CYTOKINES | |
dc.subject.other | MACROPHAGES | |
dc.title | Modulation of Osteoblastic Cell Efferocytosis by Bone Marrow Macrophages | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Genetics | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/134491/1/jcb25567.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/134491/2/jcb25567_am.pdf | |
dc.identifier.doi | 10.1002/jcb.25567 | |
dc.identifier.source | Journal of Cellular Biochemistry | |
dc.identifier.citedreference | Ogden CA, Pound JD, Batth BK, Owens S, Johannessen I, Wood K, Gregory CD. 2005. Enhanced apoptotic cell clearance capacity and B cell survival factor production by IL‐10‐activated macrophages: Implications for Burkitt’s lymphoma. J Immunol 174: 3015 – 3023. | |
dc.identifier.citedreference | Hasturk H, Kantarci A, Van Dyke TE. 2012. Oral inflammatory diseases and systemic inflammation: Role of the macrophage. Front Immunol 3: 118. | |
dc.identifier.citedreference | Honda Y, Anada T, Kamakura S, Nakamura M, Sugawara S, Suzuki O. 2006. Elevated extracellular calcium stimulates secretion of bone morphogenetic protein 2 by a macrophage cell line. Biochem Biophys Res Commun 345: 1155 – 1160. | |
dc.identifier.citedreference | Iqbal AJ, McNeill E, Kapellos TS, Regan‐Komito D, Norman S, Burd S, Smart N, Machemer DE, Stylianou E, McShane H, Channon KM, Chawla A, Greaves DR. 2014. Human CD68 promoter GFP transgenic mice allow analysis of monocyte to macrophage differentiation in vivo. Blood 124: e33 – e44. | |
dc.identifier.citedreference | Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC. 1998. Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. J Bone Miner Res 13: 793 – 802. | |
dc.identifier.citedreference | Kim S, Elkon KB, Ma X. 2004. Transcriptional suppression of interleukin‐12 gene expression following phagocytosis of apoptotic cells. Immunity 21: 643 – 653. | |
dc.identifier.citedreference | Koh AJ, Novince CM, Li X, Wang T, Taichman RS, McCauley LK. 2011. An irradiation‐altered bone marrow microenvironment impacts anabolic actions of PTH. Endocrinology 152: 4525 – 4536. | |
dc.identifier.citedreference | Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ. 2002. Shaping gene expression in activated and resting primary macrophages by IL‐10. J Immunol 169: 2253 – 2263. | |
dc.identifier.citedreference | Li X, Qin L, Bergenstock M, Bevelock LM, Novack DV, Partridge NC. 2007. Parathyroid hormone stimulates osteoblastic expression of MCP‐1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282: 33098 – 33106. | |
dc.identifier.citedreference | Lingnau M, Hoflich C, Volk HD, Sabat R, Docke WD. 2007. Interleukin‐10 enhances the CD14‐dependent phagocytosis of bacteria and apoptotic cells by human monocytes. Hum Immunol 68: 730 – 738. | |
dc.identifier.citedreference | Liu Y, Wei SH, Ho AS, de Waal Malefyt R, Moore KW. 1994. Expression cloning and characterization of a human IL‐10 receptor. J Immunol 152: 1821 – 1829. | |
dc.identifier.citedreference | Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25: 677 – 686. | |
dc.identifier.citedreference | McCauley LK, Dalli J, Koh AJ, Chiang N, Serhan CN. 2014. Cutting Edge: Parathyroid Hormone Facilitates Macrophage Efferocytosis in Bone Marrow via Proresolving Mediators Resolvin D1 and Resolvin D2. J Immunol 193: 26 – 29. | |
dc.identifier.citedreference | Minne HW, Pfeilschifter J, Scharla S, Mutschelknauss S, Schwarz A, Krempien B, Ziegler R. 1984. Inflammation‐mediated osteopenia in the rat: A new animal model for pathological loss of bone mass. Endocrinology 115: 50 – 54. | |
dc.identifier.citedreference | Miyajima S, Naruse K, Kobayashi Y, Nakamura N, Nishikawa T, Adachi K, Suzuki Y, Kikuchi T, Mitani A, Mizutani M, Ohno N, Noguchi T, Matsubara T. 2014. Periodontitis‐activated monocytes/macrophages cause aortic inflammation. Sci Rep 4: 5171. | |
dc.identifier.citedreference | Moretti S, Bartolommei L, Galosi C, Renga G, Oikonomou V, Zamparini F, Ricci G, Borghi M, Puccetti M, Piobbico D, Eramo S, Conti C, Lomurno G, Bartoli A, Napolioni V, Romani L. 2015. Fine‐tuning of Th17 Cytokines in Periodontal Disease by IL‐10. J Dent Res 94: 1267 – 1275. | |
dc.identifier.citedreference | Pfeilschifter J, Wuster C, Vogel M, Enderes B, Ziegler R, Minne HW. 1987. Inflammation‐mediated osteopenia (IMO) during acute inflammation in rats is due to a transient inhibition of bone formation. Calcif Tissue Int 41: 321 – 325. | |
dc.identifier.citedreference | Ravichandran KS, Lorenz U. 2007. Engulfment of apoptotic cells: Signals for a good meal. Nat Rev Immunol 7: 964 – 974. | |
dc.identifier.citedreference | Sinder BP, Pettit AR, McCauley LK. 2015. Macrophages: Their emerging roles in bone. J Bone Miner Res 30: 2140 – 2149. | |
dc.identifier.citedreference | Soki FN, Koh AJ, Jones JD, Kim YW, Dai J, Keller ET, Pienta KJ, Atabai K, Roca H, McCauley LK. 2014. Polarization of prostate cancer associated macrophages is induced by milk‐fat globule‐EGF Factor 8 (MFG‐E8) mediated efferocytosis. J Biol Chem 289: 24560 – 24572. | |
dc.identifier.citedreference | Swamydas M, Lionakis MS. 2013. Isolation, purification and labeling of mouse bone marrow neutrophils for functional studies and adoptive transfer experiments. J Vis Exp 77: e50586. | |
dc.identifier.citedreference | Takahashi F, Takahashi K, Shimizu K, Cui R, Tada N, Takahashi H, Soma S, Yoshioka M, Fukuchi Y. 2004. Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung 182: 173 – 185. | |
dc.identifier.citedreference | Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X. 2009. TGF‐beta1‐induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15: 757 – 765. | |
dc.identifier.citedreference | Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. 1997. Immunosuppressive effects of apoptotic cells. Nature 390: 350 – 351. | |
dc.identifier.citedreference | Xu LX, Kukita T, Kukita A, Otsuka T, Niho Y, Iijima T. 1995. Interleukin‐10 selectively inhibits osteoclastogenesis by inhibiting differentiation of osteoclast progenitors into preosteoclast‐like cells in rat bone marrow culture system. J Cell Physiol 165: 624 – 629. | |
dc.identifier.citedreference | Xu W, Roos A, Schlagwein N, Woltman AM, Daha MR, van Kooten C. 2006. IL‐10‐producing macrophages preferentially clear early apoptotic cells. Blood 107: 4930 – 4937. | |
dc.identifier.citedreference | Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR. 2011. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26: 1517 – 1532. | |
dc.identifier.citedreference | Andreassen H, Rungby J, Dahlerup JF, Mosekilde L. 1997. Inflammatory bowel disease and osteoporosis. Scand J Gastroenterol 32: 1247 – 1255. | |
dc.identifier.citedreference | Bystrom J, Evans I, Newson J, Stables M, Toor I, van Rooijen N, Crawford M, Colville‐Nash P, Farrow S, Gilroy DW. 2008. Resolution‐phase macrophages possess a unique inflammatory phenotype that is controlled by cAMP. Blood 112: 4117 – 4127. | |
dc.identifier.citedreference | Champagne CM, Takebe J, Offenbacher S, Cooper LF. 2002. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein‐2. Bone 30: 26 – 31. | |
dc.identifier.citedreference | Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR. 2008. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181: 1232 – 1244. | |
dc.identifier.citedreference | Cho SW, Soki FN, Koh AJ, Eber MR, Entezami P, Park SI, van Rooijen N, McCauley LK. 2014. Osteal macrophages support physiologic skeletal remodeling and anabolic actions of parathyroid hormone in bone. Proc Natl Acad Sci USA 111: 1545 – 1550. | |
dc.identifier.citedreference | Deodhar AA, Woolf AD. 1996. Bone mass measurement and bone metabolism in rheumatoid arthritis: A review. Br J Rheumatol 35: 309 – 322. | |
dc.identifier.citedreference | Donnelly RP, Dickensheets H, Finbloom DS. 1999. The interleukin‐10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interferon Cytokine Res 19: 563 – 573. | |
dc.identifier.citedreference | Dresner‐Pollak R, Gelb N, Rachmilewitz D, Karmeli F, Weinreb M. 2004. Interleukin 10‐deficient mice develop osteopenia, decreased bone formation, and mechanical fragility of long bones. Gastroenterology 127: 792 – 801. | |
dc.identifier.citedreference | Fadok VA, Bratton DL, Guthrie L, Henson PM. 2001. Differential effects of apoptotic versus lysed cells on macrophage production of cytokines: Role of proteases. J Immunol 166: 6847 – 6854. | |
dc.identifier.citedreference | Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF‐beta, PGE2, and PAF. J Clin Invest 101: 890 – 898. | |
dc.identifier.citedreference | Fujioka K, Kishida T, Ejima A, Yamamoto K, Fujii W, Murakami K, Seno T, Yamamoto A, Kohno M, Oda R, Yamamoto T, Fujiwara H, Kawahito Y, Mazda O. 2015. Inhibition of osteoclastogenesis by osteoblast‐like cells genetically engineered to produce interleukin‐10. Biochem Biophys Res Commun 456: 785 – 791. | |
dc.identifier.citedreference | Goerdt S, Orfanos CE. 1999. Other functions, other genes: Alternative activation of antigen‐presenting cells. Immunity 10: 137 – 142. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.