Show simple item record

Genetic variants in the PIWI‐piRNA pathway gene DCP1A predict melanoma disease‐specific survival

dc.contributor.authorZhang, Weikang
dc.contributor.authorLiu, Hongliang
dc.contributor.authorYin, Jieyun
dc.contributor.authorWu, Wenting
dc.contributor.authorZhu, Dakai
dc.contributor.authorAmos, Christopher I.
dc.contributor.authorFang, Shenying
dc.contributor.authorLee, Jeffrey E.
dc.contributor.authorLi, Yi
dc.contributor.authorHan, Jiali
dc.contributor.authorWei, Qingyi
dc.date.accessioned2016-11-18T21:24:37Z
dc.date.available2018-02-01T14:56:11Zen
dc.date.issued2016-12-15
dc.identifier.citationZhang, Weikang; Liu, Hongliang; Yin, Jieyun; Wu, Wenting; Zhu, Dakai; Amos, Christopher I.; Fang, Shenying; Lee, Jeffrey E.; Li, Yi; Han, Jiali; Wei, Qingyi (2016). "Genetic variants in the PIWI‐piRNA pathway gene DCP1A predict melanoma disease‐specific survival." International Journal of Cancer 139(12): 2730-2737.
dc.identifier.issn0020-7136
dc.identifier.issn1097-0215
dc.identifier.urihttps://hdl.handle.net/2027.42/134497
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPIWI‐piRNA pathway
dc.subject.otherCox regression
dc.subject.othersingle nucleotide polymorphisms
dc.subject.otherdisease specific survival
dc.subject.othercutaneous melanoma
dc.titleGenetic variants in the PIWI‐piRNA pathway gene DCP1A predict melanoma disease‐specific survival
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134497/1/ijc30409_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134497/2/ijc30409.pdf
dc.identifier.doi10.1002/ijc.30409
dc.identifier.sourceInternational Journal of Cancer
dc.identifier.citedreferenceAulchenko YS, Ripke S, Isaacs A, et al. GenABEL: an R library for genome‐wide association analysis. Bioinformatics 2007; 23: 1294 – 6.
dc.identifier.citedreferenceHe W, Wang Z, Wang Q, et al. Expression of HIWI in human esophageal squamous cell carcinoma is significantly associated with poorer prognosis. BMC Cancer 2009; 9: 426.
dc.identifier.citedreferenceZhao YM, Zhou JM, Wang LR, et al. HIWI is associated with prognosis in patients with hepatocellular carcinoma after curative resection. Cancer 2012; 118: 2708 – 17.
dc.identifier.citedreferenceWang Y, Liu Y, Shen X, et al. The PIWI protein acts as a predictive marker for human gastric cancer. Int J Clin Exp Pathol 2012; 5: 315 – 25.
dc.identifier.citedreferenceSun G, Wang Y, Sun L, et al. Clinical significance of Hiwi gene expression in gliomas. Brain Res 2011; 1373: 183 – 8.
dc.identifier.citedreferenceTaubert H, Greither T, Kaushal D, et al. Expression of the stem cell self‐renewal gene Hiwi and risk of tumour‐related death in patients with soft‐tissue sarcoma. Oncogene 2007; 26: 1098 – 100.
dc.identifier.citedreferenceAmos CI, Wang LE, Lee JE, et al. Genome‐wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 2011; 20: 5012 – 23.
dc.identifier.citedreferenceSong F, Qureshi AA, Zhang J, et al. Exonuclease 1 (EXO1) gene variation and melanoma risk. DNA Repair 2012; 11: 304 – 9.
dc.identifier.citedreferenceXu Z, Taylor JA. SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res 2009; 37: W600 – 5.
dc.identifier.citedreferenceZhang W, Liu H, Liu Z, et al. Functional Variants in Notch Pathway Genes NCOR2, NCSTN and MAML2 Predict Survival of Patients with Cutaneous Melanoma. Cancer Epidemiol Biomarkers Prev 2015; 24: 1101 – 10.
dc.identifier.citedreferenceYin J, Liu H, Liu Z, et al. Genetic variants in Fanconi Anemia Pathway Genes BRCA2 and FANCA Predict Melanoma Survival. J Invest Dermatol 2015; 135: 542 – 50.
dc.identifier.citedreferenceBalch CM, Gershenwald JE, Soong SJ, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol 2009; 27: 6199 – 206.
dc.identifier.citedreferenceGershenwald JE, Ross MI. Sentinel‐lymph‐node biopsy for cutaneous melanoma. New Engl J Med 2011; 364: 1738 – 45.
dc.identifier.citedreferenceNyholt DR. SECA: SNP effect concordance analysis using genome‐wide association summary results. Bioinformatics 2014; 30: 2086 – 8.
dc.identifier.citedreferenceBiernacka JM, Tang R, Li J, et al. Assessment of genotype imputation methods. BMC Proc 2009; 3: S5.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289 – 300.
dc.identifier.citedreferenceGenomes Project C, Abecasis GR, Auton A, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56 – 65.
dc.identifier.citedreferenceFine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc 1999; 94: 496 – 509.
dc.identifier.citedreferenceMontgomery SB, Sammeth M, Gutierrez‐Arcelus M, et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010; 464: 773 – 777.
dc.identifier.citedreferenceAC’t Hoen P, Friedländer MR, Almlöf J, et al. Reproducibility of high‐throughput mRNA and small RNA sequencing across laboratories. Nat Biotechnol 2013; 31: 1015 – 22.
dc.identifier.citedreferenceAizer A, Brody Y, Ler LW, et al. The dynamics of mammalian P body transport, assembly, and disassembly in vivo. Mol Biol Cell 2008; 19: 4154 – 66.
dc.identifier.citedreferenceAizer A, Kafri P, Kalo A, et al. The P body protein Dcp1a is hyper‐phosphorylated during mitosis. PLoS One 2013; 8: e49783.
dc.identifier.citedreferenceChiang P‐Y, Shen Y‐F, Su Y‐L, et al. Phosphorylation of mRNA decapping protein Dcp1a by the ERK signaling pathway during early differentiation of 3T3‐L1 preadipocytes. PloS One 2013; 8: e61697.
dc.identifier.citedreferenceArribere JA, Doudna JA, Gilbert WV. Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Mol Cell 2011; 44: 745 – 58.
dc.identifier.citedreferenceCallebaut I. An EVH1/WH1 domain as a key actor in TGFβ signalling. FEBS Lett 2002; 519: 178 – 80.
dc.identifier.citedreferenceDougherty JD, Reineke LC, Lloyd RE. mRNA decapping enzyme 1a (Dcp1a)‐induced translational arrest through protein kinase R (PKR) activation requires the N‐terminal enabled vasodilator‐stimulated protein homology 1 (EVH1) domain. J Biol Chem 2014; 289: 3936 – 49.
dc.identifier.citedreferenceNoguchi S, Mori T, Hoshino Y, et al. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas. Vet Comp Oncol 2013; 11: 113 – 23.
dc.identifier.citedreferenceChen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 2006; 38: 1452 – 6.
dc.identifier.citedreferenceChristensen BC, Moyer BJ, Avissar M, et al. A let‐7 microRNA‐binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis 2009; 30: 1003 – 7.
dc.identifier.citedreferenceEsteller M. Non‐coding RNAs in human disease. Nat Rev Genet 2011; 12: 861 – 74.
dc.identifier.citedreferenceSiomi MC, Sato K, Pezic D, et al. PIWI‐interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Bio 2011; 12: 246 – 58.
dc.identifier.citedreferenceSavitsky M, Kwon D, Georgiev P, et al. Telomere elongation is under the control of the RNAi‐based mechanism in the Drosophila germline. Gene Dev 2006; 20: 345 – 54.
dc.identifier.citedreferenceYan Z, Hu HY, Jiang X, et al. Widespread expression of piRNA‐like molecules in somatic tissues. Nucleic Acids Res 2011; 39: 6596 – 607.
dc.identifier.citedreferenceToth KF, Pezic D, Stuwe E, et al. The piRNA Pathway Guards the Germline Genome Against Transposable Elements. Adv Exp Med Biol 2016; 886: 51 – 77.
dc.identifier.citedreferenceCheng J, Deng H, Xiao B, et al. piR‐823, a novel non‐coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 2012; 315: 12 – 7.
dc.identifier.citedreferenceCheng J, Guo J‐M, Xiao B‐X, et al. piRNA, the new non‐coding RNA, is aberrantly expressed in human cancer cells. Clin Chim Acta 2011; 412: 1621 – 5.
dc.identifier.citedreferenceXie Y, Yang Y, Ji D, et al. Hiwi downregulation, mediated by shRNA, reduces the proliferation and migration of human hepatocellular carcinoma cells. Mol Med Rep 2015; 11: 1455 – 61.
dc.identifier.citedreferenceKrishnan P, Ghosh S, Graham K, et al. Piwi‐interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget, 2016 May 10. doi: 10.18632/oncotarget.9272. [Epub ahead of print].
dc.identifier.citedreferenceLim SL, Ricciardelli C, Oehler MK, et al. Overexpression of piRNA pathway genes in epithelial ovarian cancer. PLoS One 2014; 9: e99687.
dc.identifier.citedreferenceCui L, Lou Y, Zhang X, et al. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using piRNAs as markers. Clin Biochem 2011; 44: 1050 – 1057.
dc.identifier.citedreferenceQiao D, Zeeman A‐M, Deng W, et al. Molecular characterization of hiwi, a human member of the piwi gene family whose overexpression is correlated to seminomas. Oncogene 2002; 21: 3988 – 3999.
dc.identifier.citedreferenceLiu W‐K, Jiang X‐Y, Zhang Z‐X. Expression of PSCA, PIWIL1 and TBX2 and its correlation with HPV16 infection in formalin‐fixed, paraffin‐embedded cervical squamous cell carcinoma specimens. Arch Virol 2010; 155: 657 – 663.
dc.identifier.citedreferenceLiu X, Sun Y, Guo J, et al. Expression of hiwi gene in human gastric cancer was associated with proliferation of cancer cells. Int J Cancer 2006; 118: 1922 – 1929.
dc.identifier.citedreferenceLee JH, Schütte D, Wulf G, et al. Stem‐cell protein Piwil2 is widely expressed in tumors and inhibits apoptosis through activation of Stat3/Bcl‐XL pathway. Hum Mol Genet 2006; 15: 201 – 211.
dc.identifier.citedreferenceLee JH, Jung C, Javadian‐Elyaderani P, et al. Pathways of proliferation and antiapoptosis driven in breast cancer stem cells by stem cell protein piwil2. Can Res 2010; 70: 4569 – 4579.
dc.identifier.citedreferenceLu Y, Zhang K, Li C, et al. Piwil2 suppresses p53 by inducing phosphorylation of signal transducer and activator of transcription 3 in tumor cells. PLoS One 2012; 7: e30999.
dc.identifier.citedreferenceGrochola L, Greither T, Taubert H, et al. The stem cell‐associated Hiwi gene in human adenocarcinoma of the pancreas: expression and risk of tumour‐related death. Br J Cancer 2008; 99: 1083 – 8.
dc.identifier.citedreferenceLiu C, Qu L, Dong B, et al. Combined phenotype of 4 markers improves prognostic value of patients with colon cancer. Am J Med Sci 2012; 343: 295 – 302.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.