Show simple item record

Intraspinal stem cell transplantation for amyotrophic lateral sclerosis

dc.contributor.authorChen, Kevin S.
dc.contributor.authorSakowski, Stacey A.
dc.contributor.authorFeldman, Eva L.
dc.date.accessioned2016-11-18T21:24:42Z
dc.date.available2017-05-02T15:09:14Zen
dc.date.issued2016-03
dc.identifier.citationChen, Kevin S.; Sakowski, Stacey A.; Feldman, Eva L. (2016). "Intraspinal stem cell transplantation for amyotrophic lateral sclerosis." Annals of Neurology 79(3): 342-353.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/134502
dc.publisherWiley Periodicals, Inc.
dc.titleIntraspinal stem cell transplantation for amyotrophic lateral sclerosis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134502/1/ana24584_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134502/2/ana24584.pdf
dc.identifier.doi10.1002/ana.24584
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceMoviglia GA, Moviglia‐Brandolino MT, Varela GS, et al. Feasibility, safety, and preliminary proof of principles of autologous neural stem cell treatment combined with T‐cell vaccination for ALS patients. Cell Transplant 2012; 21 ( suppl 1 ): S57 – S63.
dc.identifier.citedreferenceRiley JP, Raore B, Taub JS, et al. Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery 2011; 69 ( 2 suppl operative ):ons147–ons154; discussion ons155.
dc.identifier.citedreferenceUsvald D, Vodicka P, Hlucilova J, et al. Analysis of dosing regimen and reproducibility of intraspinal grafting of human spinal stem cells in immunosuppressed minipigs. Cell Transplant 2010; 19: 1103 – 1122.
dc.identifier.citedreferenceFeldman EL, Boulis NM, Hur J, et al. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: phase 1 trial outcomes. Ann Neurol 2014; 75: 363 – 373.
dc.identifier.citedreferenceLunn JS, Sakowski SA, Federici T, et al. Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011; 6: 201 – 213.
dc.identifier.citedreferenceRiley J, Federici T, Polak M, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2012; 71: 405 – 416; discussion 416.
dc.identifier.citedreferenceRiley J, Glass J, Feldman EL, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 2014; 74: 77 – 87.
dc.identifier.citedreferenceTadesse T, Gearing M, Senitzer D, et al. Analysis of graft survival in a trial of stem cell transplant in ALS. Ann Clin Transl Neurol 2014; 1: 900 – 908.
dc.identifier.citedreferenceOlanow CW, Goetz CG, Kordower JH, et al. A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 2003; 54: 403 – 414.
dc.identifier.citedreferenceOh KW, Moon C, Kim HY, et al. Phase I trial of repeated intrathecal autologous bone marrow‐derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl Med 2015; 4: 590 – 597.
dc.identifier.citedreferenceFaravelli I, Riboldi G, Nizzardo M, et al. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 2014; 71: 3257 – 3268.
dc.identifier.citedreferenceBurkhardt MF, Martinez FJ, Wright S, et al. A cellular model for sporadic ALS using patient‐derived induced pluripotent stem cells. Mol Cell Neurosci 2013; 56: 355 – 364.
dc.identifier.citedreferenceDimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: 1218 – 1221.
dc.identifier.citedreferenceEgawa N, Kitaoka S, Tsukita K, et al. Drug screening for ALS using patient‐specific induced pluripotent stem cells. Sci Transl Med 2012; 4: 145ra04.
dc.identifier.citedreferenceKondo T, Funayama M, Tsukita K, et al. Focal transplantation of human iPSC‐derived glial‐rich neural progenitors improves lifespan of ALS mice. Stem Cell Rep 2014; 3: 242 – 249.
dc.identifier.citedreferenceSareen D, Gowing G, Sahabian A, et al. Human induced pluripotent stem cells are a novel source of neural progenitor cells (iNPCs) that migrate and integrate in the rodent spinal cord. J Comp Neurol 2014; 522: 2707 – 2728.
dc.identifier.citedreferenceLarkindale J, Yang W, Hogan PF, et al. Cost of illness for neuromuscular diseases in the United States. Muscle Nerve 2014; 49: 431 – 438.
dc.identifier.citedreferenceGordon PH. Amyotrophic lateral sclerosis: an update for 2013 Clinical Features, Pathophysiology, Management and Therapeutic Trials. Aging Dis 2013; 4: 295 – 310.
dc.identifier.citedreferenceRobberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci 2013; 14: 248 – 264.
dc.identifier.citedreferenceBellingham MC. A review of the neural mechanisms of action and clinical efficiency of riluzole in treating amyotrophic lateral sclerosis: what have we learned in the last decade? CNS Neurosci Ther 2011; 17: 4 – 31.
dc.identifier.citedreferenceGrosskreutz J, Van Den Bosch L, Keller BU. Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium 2010; 47: 165 – 174.
dc.identifier.citedreferenceMartin LJ, Chang Q. Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 2012; 45: 30 – 42.
dc.identifier.citedreferenceRedler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). Prog Mol Biol Transl Sci 2012; 107: 215 – 262.
dc.identifier.citedreferenceWainger BJ, Kiskinis E, Mellin C, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient‐derived motor neurons. Cell Rep 2014; 7: 1 – 11.
dc.identifier.citedreferenceLunn JS, Hefferan MP, Marsala M, Feldman EL. Stem cells: comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 2009; 27: 133 – 140.
dc.identifier.citedreferenceTovar YRLB, Ramirez‐Jarquin UN, Lazo‐Gomez R, Tapia R. Trophic factors as modulators of motor neuron physiology and survival: implications for ALS therapy. Front Cell Neurosci 2014; 8: 61.
dc.identifier.citedreferenceVincent AM, Mobley BC, Hiller A, Feldman EL. IGF‐I prevents glutamate‐induced motor neuron programmed cell death. Neurobiol Dis 2004; 16: 407 – 416.
dc.identifier.citedreferenceRizzo F, Riboldi G, Salani S, et al. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 2014; 71: 999 – 1015.
dc.identifier.citedreferenceCozzolino M, Ferri A, Valle C, Carri MT. Mitochondria and ALS: implications from novel genes and pathways. Mol Cell Neurosci 2013; 55: 44 – 49.
dc.identifier.citedreferenceMartin LJ, Liu Z, Chen K, et al. Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase‐1 transgenic mice: mechanisms of mitochondriopathy and cell death. J Comp Neurol 2007; 500: 20 – 46.
dc.identifier.citedreferenceTadic V, Prell T, Lautenschlaeger J, Grosskreutz J. The ER mitochondria calcium cycle and ER stress response as therapeutic targets in amyotrophic lateral sclerosis. Front Cell Neurosci 2014; 8: 147.
dc.identifier.citedreferenceMitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014; 13: 1127 – 1138.
dc.identifier.citedreferenceBensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med 1994; 330: 585 – 591.
dc.identifier.citedreferenceDesnuelle C, Dib M, Garrel C, Favier A. A double‐blind, placebo‐controlled randomized clinical trial of alpha‐tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. ALS Riluzole‐Tocopherol Study Group. Amyotroph Lateral Scler Other Motor Neuron Disord 2001; 2: 9 – 18.
dc.identifier.citedreferenceDupuis L, Dengler R, Heneka MT, et al. A randomized, double blind, placebo‐controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 2012; 7: e37885.
dc.identifier.citedreferenceMiller RG, Moore DH Jr, Gelinas DF, et al. Phase III randomized trial of gabapentin in patients with amyotrophic lateral sclerosis. Neurology 2001; 56: 843 – 848.
dc.identifier.citedreferenceSorenson EJ, Windbank AJ, Mandrekar JN, et al. Subcutaneous IGF‐1 is not beneficial in 2‐year ALS trial. Neurology 2008; 71: 1770 – 1775.
dc.identifier.citedreferenceMeininger V, Bensimon G, Bradley WR, et al. Efficacy and safety of xaliproden in amyotrophic lateral sclerosis: results of two phase III trials. Amyotroph Lateral Scler Other Motor Neuron Disord 2004; 5: 107 – 117.
dc.identifier.citedreferencePastula DM, Moore DH, Bedlack RS. Creatine for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev 2012; 12: CD005225.
dc.identifier.citedreferenceSacca F, Quarantelli M, Rinaldi C, et al. A randomized controlled clinical trial of growth hormone in amyotrophic lateral sclerosis: clinical, neuroimaging, and hormonal results. J Neurol 2012; 259: 132 – 138.
dc.identifier.citedreferenceCudkowicz ME, Shefner JM, Schoenfeld DA, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol 2006; 60: 22 – 31.
dc.identifier.citedreferenceGordon PH, Moore DH, Miller RG, et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007; 6: 1045 – 1053.
dc.identifier.citedreferenceMiller R, Bradley W, Cudkowicz M, et al. Phase II/III randomized trial of TCH346 in patients with ALS. Neurology 2007; 69: 776 – 784.
dc.identifier.citedreferenceKaufmann P, Thompson JL, Levy G, et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol 2009; 66: 235 – 244.
dc.identifier.citedreferenceLauria G, Dalla Bella E, Antonini G, et al. Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study. J Neurol Neurosurg Psychiatry 2015; 86: 879 – 886.
dc.identifier.citedreferenceMeininger V, Drory VE, Leigh PN, et al. Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double‐blind, randomized, multicentre, placebo‐controlled trial. Amyotroph Lateral Scler 2009; 10: 378 – 383.
dc.identifier.citedreferenceAggarwal SP, Zinman L, Simpson E, et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double‐blind, placebo‐controlled trial. Lancet Neurol 2010; 9: 481 – 488.
dc.identifier.citedreferenceMorrison KE, Dhariwal S, Hornabrook R, et al. Lithium in patients with amyotrophic lateral sclerosis (LiCALS): a phase 3 multicentre, randomised, double‐blind, placebo‐controlled trial. Lancet Neurol 2013; 12: 339 – 345.
dc.identifier.citedreferencede Carvalho M, Pinto S, Costa J, et al. A randomized, placebo‐controlled trial of memantine for functional disability in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2010; 11: 456 – 460.
dc.identifier.citedreferenceCudkowicz ME, Titus S, Kearney M, et al. Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi‐stage, randomised, double‐blind, placebo‐controlled trial. Lancet Neurol 2014; 13: 1083 – 1091.
dc.identifier.citedreferenceCudkowicz ME, van den Berg LH, Shefner JM, et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double‐blind, phase 3 trial. Lancet Neurol 2013; 12: 1059 – 1067.
dc.identifier.citedreferenceLenglet T, Lacomblez L, Abitbol JL, et al. A phase II‐III trial of olesoxime in subjects with amyotrophic lateral sclerosis. Eur J Neurol 2014; 21: 529 – 536.
dc.identifier.citedreferenceLunn JS, Sakowski SA, Kim B, et al. Vascular endothelial growth factor prevents G93A‐SOD1‐induced motor neuron degeneration. Dev Neurobiol 2009; 69: 871 – 884.
dc.identifier.citedreferenceXu L, Yan J, Chen D, et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD‐1 transgenic rats. Transplantation 2006; 82: 865 – 875.
dc.identifier.citedreferenceLepore AC, Rauck B, Dejea C, et al. Focal transplantation‐based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 2008; 11: 1294 – 1301.
dc.identifier.citedreferenceHefferan MP, Galik J, Kakinohana O, et al. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS One 2012; 7: e42614.
dc.identifier.citedreferenceWichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002; 110: 385 – 397.
dc.identifier.citedreferenceNagai M, Aoki M, Miyoshi I, et al. Rats expressing human cytosolic copper‐zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J Neurosci 2001; 21: 9246 – 9254.
dc.identifier.citedreferenceRosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993; 362: 59 – 62.
dc.identifier.citedreferenceLopez‐Gonzalez R, Kunckles P, Velasco I. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 2009; 18: 1171 – 1181.
dc.identifier.citedreferenceDeshpande DM, Kim YS, Martinez T, et al. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 2006; 60: 32 – 44.
dc.identifier.citedreferenceHarper JM, Krishnan C, Darman JS, et al. Axonal growth of embryonic stem cell‐derived motoneurons in vitro and in motoneuron‐injured adult rats. Proc Natl Acad Sci U S A 2004; 101: 7123 – 7128.
dc.identifier.citedreferenceGothelf Y, Abramov N, Harel A, Offen D. Safety of repeated transplantations of neurotrophic factors‐secreting human mesenchymal stromal stem cells. Clin Transl Med 2014; 3: 21.
dc.identifier.citedreferenceNanou A, Higginbottom A, Valori CF, et al. Viral delivery of antioxidant genes as a therapeutic strategy in experimental models of amyotrophic lateral sclerosis. Mol Ther 2013; 21: 1486 – 1496.
dc.identifier.citedreferenceKliem MA, Heeke BL, Franz CK, et al. Intramuscular administration of a VEGF zinc finger transcription factor activator (VEGF‐ZFP‐TF) improves functional outcomes in SOD1 rats. Amyotroph Lateral Scler 2011; 12: 331 – 339.
dc.identifier.citedreferenceSuzuki M, McHugh J, Tork C, et al. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 2008; 16: 2002 – 2010.
dc.identifier.citedreferenceHenriques A, Pitzer C, Dittgen T, et al. CNS‐targeted viral delivery of G‐CSF in an animal model for ALS: improved efficacy and preservation of the neuromuscular unit. Mol Ther 2011; 19: 284 – 292.
dc.identifier.citedreferenceFoust KD, Flotte TR, Reier PJ, Mandel RJ. Recombinant adeno‐associated virus‐mediated global anterograde delivery of glial cell line‐derived neurotrophic factor to the spinal cord: comparison of rubrospinal and corticospinal tracts in the rat. Hum Gene Ther 2008; 19: 71 – 82.
dc.identifier.citedreferenceMartínez HR, Molina‐Lopez JF, González‐Garza MT, et al. Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell Transplant 2012; 21: 1899 – 1907.
dc.identifier.citedreferenceChen L, Chen D, Xi H, et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: benefits from multiple transplantations. Cell Transplant 2012; 21 ( suppl 1 ): S65 – S77.
dc.identifier.citedreferenceBoillee S, Yamanaka K, Lobsiger CS, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006; 312: 1389 – 1392.
dc.identifier.citedreferencePrabhakar S, Marwaha N, Lal V, et al. Autologous bone marrow‐derived stem cells in amyotrophic lateral sclerosis: a pilot study. Neurol India 2012; 60: 465 – 469.
dc.identifier.citedreferenceHossaini M, Cardona Cano S, van Dis V, et al. Spinal inhibitory interneuron pathology follows motor neuron degeneration independent of glial mutant superoxide dismutase 1 expression in SOD1‐ALS mice. J Neuropathol Exp Neurol 2011; 70: 662 – 677.
dc.identifier.citedreferenceZagami CJ, Beart PM, Wallis N, et al. Oxidative and excitotoxic insults exert differential effects on spinal motoneurons and astrocytic glutamate transporters: implications for the role of astrogliosis in amyotrophic lateral sclerosis. Glia 2009; 57: 119 – 135.
dc.identifier.citedreferenceClement AM, Nguyen MD, Roberts EA, et al. Wild‐type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 2003; 302: 113 – 117.
dc.identifier.citedreferenceEvans MC, Couch Y, Sibson N, Turner MR. Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 2013; 53: 34 – 41.
dc.identifier.citedreferenceMurdock BJ, Bender DE, Segal BM, Feldman EL. The dual roles of immunity in ALS: injury overrides protection. Neurobiol Dis 2015; 77: 1 – 12.
dc.identifier.citedreferencePansarasa O, Rossi D, Berardinelli A, Cereda C. Amyotrophic lateral sclerosis and skeletal muscle: an update. Mol Neurobiol 2014; 49: 984 – 990.
dc.identifier.citedreferenceMoloney EB, de Winter F, Verhaagen J. ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 2014; 8: 252.
dc.identifier.citedreferenceChew S, Khandji AG, Montes J, et al. Olfactory ensheathing glia injections in Beijing: misleading patients with ALS. Amyotroph Lateral Scler 2007; 8: 314 – 316.
dc.identifier.citedreferenceGiordana MT, Grifoni S, Votta B, et al. Neuropathology of olfactory ensheathing cell transplantation into the brain of two amyotrophic lateral sclerosis (ALS) patients. Brain Pathol 2010; 20: 730 – 737.
dc.identifier.citedreferenceHuang H, Chen L, Xi H, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study. Clin Transplant 2008; 22: 710 – 718.
dc.identifier.citedreferencePiepers S, van den Berg LH. No benefits from experimental treatment with olfactory ensheathing cells in patients with ALS. Amyotroph Lateral Scler 2010; 11: 328 – 330.
dc.identifier.citedreferenceZhang Y, Wang L, Fu Y, et al. Preliminary investigation of effect of granulocyte colony stimulating factor on amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009; 10: 430 – 431.
dc.identifier.citedreferenceCashman N, Tan L‐Y, Krieger C, et al. Pilot study of granulocyte colony stimulating factor (G‐CSF)‐mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve 2008; 37: 620 – 625.
dc.identifier.citedreferenceChiò A, Mora G, La Bella V, et al. Repeated courses of granulocyte colony‐stimulating factor in amyotrophic lateral sclerosis: clinical and biological results from a prospective multicenter study. Muscle Nerve 2011; 43: 189 – 195.
dc.identifier.citedreferenceJanson CG, Ramesh TM, During MJ, et al. Human intrathecal transplantation of peripheral blood stem cells in amyotrophic lateral sclerosis. J Hematother Stem Cell Res 2001; 10: 913 – 915.
dc.identifier.citedreferenceNefussy B, Artamonov I, Deutsch V, et al. Recombinant human granulocyte‐colony stimulating factor administration for treating amyotrophic lateral sclerosis: a pilot study. Amyotroph Lateral Scler 2010; 11: 187 – 193.
dc.identifier.citedreferenceTarella C, Rutella S, Gualandi F, et al. Consistent bone marrow‐derived cell mobilization following repeated short courses of granulocyte‐colony‐stimulating factor in patients with amyotrophic lateral sclerosis: results from a multicenter prospective trial. Cytotherapy 2010; 12: 50 – 59.
dc.identifier.citedreferenceAppel SH, Engelhardt JI, Henkel JS, et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis. Neurology 2008; 71: 1326 – 1334.
dc.identifier.citedreferenceKim KS, Lee HJ, An J, et al. Transplantation of human adipose tissue‐derived stem cells delays clinical onset and prolongs life span in ALS mouse model. Cell Transplant 2014; 23: 1585 – 1597.
dc.identifier.citedreferenceBaek W, Kim YS, Koh SH, et al. Stem cell transplantation into the intraventricular space via an Ommaya reservoir in a patient with amyotrophic lateral sclerosis. J Neurosurg Sci 2012; 56: 261 – 263.
dc.identifier.citedreferenceBlanquer M, Moraleda JM, Iniesta F, et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells 2012; 30: 1277 – 1285.
dc.identifier.citedreferenceDeda H, Inci MC, Kürekçi AE, et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow‐derived hematopoietic stem cell transplantation: a 1‐year follow‐up. Cytotherapy 2009; 11: 18 – 25.
dc.identifier.citedreferenceKarussis D, Karageorgiou C, Vaknin‐Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010; 67: 1187 – 1194.
dc.identifier.citedreferenceMazzini L, Mareschi K, Ferrero I, et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long‐term safety study. Cytotherapy 2012; 14: 56 – 60.
dc.identifier.citedreferenceGlass JD, Boulis NM, Johe K, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells 2012; 30: 1144 – 1151.
dc.identifier.citedreferenceLunn JS, Sakowski SA, Feldman EL. Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32: 1099 – 1109.
dc.identifier.citedreferenceBoulis NM, Federici T, Glass JD, et al. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 2011; 8: 172 – 176.
dc.identifier.citedreferenceThomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol 2014; 262 ( pt B ): 127 – 137.
dc.identifier.citedreferenceGoutman SA, Chen KS, Feldman EL. Recent advances and the future of stem cell therapies in amyotrophic lateral sclerosis. Neurotherapeutics 2015; 12: 428 – 448.
dc.identifier.citedreferenceXu L, Shen P, Hazel T, et al. Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats. Neurosci Lett 2011; 494: 222 – 226.
dc.identifier.citedreferenceDlouhy BJ, Awe O, Rao RC, et al. Autograft‐derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient: case report. J Neurosurg Spine 2014; 21: 618 – 622.
dc.identifier.citedreferenceLunn JS, Pacut C, Stern E, et al. Intraspinal transplantation of neurogenin‐expressing stem cells generates spinal cord neural progenitors. Neurobiol Dis 2012; 46: 59 – 68.
dc.identifier.citedreferenceXu L, Ryugo DK, Pongstaporn T, et al. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 2009; 514: 297 – 309.
dc.identifier.citedreferenceYan J, Xu L, Welsh AM, et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 2007; 4: e39.
dc.identifier.citedreferenceRaore B, Federici T, Taub J, et al. Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Gottingen minipigs. Spine 2011; 36: E164 – E171.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.