Show simple item record

Evaluation of the southerly low‐level jet climatology for the central United States as simulated by NARCCAP regional climate models

dc.contributor.authorTang, Ying
dc.contributor.authorZhong, Shiyuan
dc.contributor.authorWinker, Julie A.
dc.contributor.authorWalters, Claudia K.
dc.date.accessioned2016-11-18T21:24:45Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-11-15
dc.identifier.citationTang, Ying; Zhong, Shiyuan; Winker, Julie A.; Walters, Claudia K. (2016). "Evaluation of the southerly low‐level jet climatology for the central United States as simulated by NARCCAP regional climate models." International Journal of Climatology 36(13): 4338-4357.
dc.identifier.issn0899-8418
dc.identifier.issn1097-0088
dc.identifier.urihttps://hdl.handle.net/2027.42/134503
dc.description.abstractAn ensemble of simulations from four regional climate models (RCMs) driven by a global reanalysis was obtained from the North American Regional Climate Change Assessment Program (NARCCAP) and used to evaluate the ability of the RCMs to simulate the long‐term (1979–2000) climatology of southerly low‐level jets (S‐LLJs) in the central United States. The RCM‐derived S‐LLJ climatologies were evaluated against rawinsonde observations for the same period. The use of a small ensemble of RCM simulations helped to identify model differences and assisted with interpretation. The RCMs generally reproduced the broad spatial patterns and temporal variations of jet frequency and average jet height and speed. No model consistently outperformed the others in all aspects of the evaluation, although differences existed between models in the placement, migration and relative strength of ‘hotspots’ of more frequent jet activity. In particular, three of the four models placed the centre of greatest nocturnal S‐LLJ activity during the warm season in northern and central Texas, whereas for the other model the greatest jet activity was located in the south‐central plains (Kansas/Oklahoma). The magnitude of a S‐LLJ frequency maximum over south Texas also varied between models, with simulated frequencies exceeding observed frequencies for some models but substantially underestimating for others. The evaluation presented here highlights the potential applications of RCMs in S‐LLJ research for future climate and other assessment studies that require three‐dimensional data with relatively high spatial and temporal resolutions. The overall performance of the models in reproducing the long‐term S‐LLJ climatology supports the use of NARCCAP RCM simulations in climate assessments for the central United States where S‐LLJs are an important contributor to the regional climatology.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherrawinsonde
dc.subject.otherclimatology
dc.subject.otherevaluation
dc.subject.otherNARCCAP
dc.subject.othermodel ensembles
dc.subject.otherregional climate models
dc.subject.otherlow‐level jet
dc.titleEvaluation of the southerly low‐level jet climatology for the central United States as simulated by NARCCAP regional climate models
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134503/1/joc4636_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134503/2/joc4636.pdf
dc.identifier.doi10.1002/joc.4636
dc.identifier.sourceInternational Journal of Climatology
dc.identifier.citedreferenceSjostedt DW, Sigmon JT, Colucci SJ. 1990. The Carolina nocturnal low‐level jet: synoptic climatology and a case study. Weather Forecast. 5: 404 – 415, doi: 10.1175/1520-0434(1990)005<0404:TCNLLJ>2.0.CO;2.
dc.identifier.citedreferenceMesinger F, DiMego G, Kalnay E, Mitchell K, Shafran PC, Ebisuzaki W, Jovic D, Woollen J, Rogers E, Berbery EH, Ek MB, Fan Y, Grumbine R, Higgins W, Li H, Lin Y, Manikin G, Parrish D, Shi W. 2006. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87: 343 – 360, doi: 10.1175/BAMS-87-3-343.
dc.identifier.citedreferenceMitchell MJ, Arritt RW, Labas K. 1995. A climatology of the warm season Great Plains low‐level jet using wind profiler observations. Weather Forecast. 10: 576 – 591, doi: 10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.
dc.identifier.citedreferenceMo KC, Chelliah M, Carrera ML, Higgins RW, Ebisuzaki W. 2005. Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeorol. 6: 710 – 728, doi: 10.1175/JHM452.1.
dc.identifier.citedreferencePal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL. 2007. The ICTP RegCM3 and RegCNET: regional climate modeling for the developing world. Bull. Am. Meteorol. Soc. 88: 1395 – 1409, doi: 10.1175/BAMS-88-9-1395.
dc.identifier.citedreferencePitchford KL, London J. 1962. The low‐level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteorol. 1: 43 – 47, doi: 10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.
dc.identifier.citedreferenceQiao L, Pan Z, Herrmann RB, Hong Y. 2014. Hydrological variability and uncertainty of lower Missouri river basin under changing climate. J. Am. Water Resour. Assoc. 50: 246 – 260, doi: 10.1111/jawr.12126.
dc.identifier.citedreferenceSkamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG. 2005. A Description of the Advanced Research WRF Version 2. NCAR Tech Notes‐468 + STR. National Center for Atmospheric Research: Boulder, CO.
dc.identifier.citedreferenceSong J, Liao K, Coulter RL, Lesht BM. 2005. Climatology of the low‐level jet at the southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteorol. 44: 1593 – 1606, doi: 10.1175/JAM2294.1.
dc.identifier.citedreferenceStensrud DJ. 1996. Importance of low‐level jets to climate: a review. J. Clim. 9: 1698 – 1711, doi: 10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.
dc.identifier.citedreferenceStorm B, Dudhia J, Basu S, Swift A, Giammanco I. 2009. Evaluation of the weather research and forecasting model on forecasting low‐level jets: implications for wind energy. Wind Energy 12: 81 – 90, doi: 10.1002/we.v12:1.
dc.identifier.citedreferenceTakle ES, Jha M, Lu E, Arritt RW, Gutowski WJ. 2010. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20th Century contemporary results of global climate models and NARCCAP regional climate models. Meteorol. Z. 19: 341 – 346, doi: 10.1127/0941-2948/2010/0464.
dc.identifier.citedreferenceUccellini LW, Johnson DR. 1979. Coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Weather Rev. 107: 682 – 703, doi: 10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.
dc.identifier.citedreferenceVanderwende BJ, Lundquist JK, Rhodes ME, Takle ES, Irvin SL. 2015. Observing and simulating the summertime low‐level jet in Central Iowa. Mon. Weather Rev. 143: 2319 – 2336, doi: 10.1175/MWR-D-14-00325.1.
dc.identifier.citedreferenceWalters CK. 2001. Airflow configurations of warm season southerly low‐level wind maxima in the Great Plains. Part II: the synoptic and subsynoptic‐scale environment. Weather Forecast. 16: 531 – 551, doi: 10.1175/1520-0434(2001)016<0531:ACOWSS>2.0.CO;2.
dc.identifier.citedreferenceWalters CK, Winkler JA, Shadbolt RP, van Ravensway J, Bierly GD. 2008. A long‐term climatology of southerly and northerly low‐level jets for the central United States. Ann. Assoc. Am. Geogr. 98: 521 – 552, doi: 10.1080/00045600802046387.
dc.identifier.citedreferenceWalters CK, Winkler JA, Husseini S, Keeling R, Nikolic J, Zhong S. 2014. Low‐level jets in the North American regional reanalysis (NARR): a comparison with rawinsonde observations. J. Appl. Meteorol. Climatol. 53: 2093 – 2113, doi: 10.1175/JAMC-D-13-0364.1.
dc.identifier.citedreferenceWerth D, Kurzeja R, Dias NL, Zhang G, Duarte H, Fischer M, Parker M, Leclerc M. 2011. The simulation of the southern Great Plains nocturnal boundary layer and the low‐level jet with a high‐resolution mesoscale atmospheric model. J. Appl. Meteorol. Climatol. 50: 1497 – 1513, doi: 10.1175/2011JAMC2272.1.
dc.identifier.citedreferenceWhiteman CD, Bian X, Zhong S. 1997. Low‐level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteorol. Climatol. 36: 1363 – 1376, doi: 10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.
dc.identifier.citedreferenceWinkler JA. 2004. The impact of technology upon in situ atmospheric observations and climate science. In Geography and Technology, Brunn SD, Cutter SL, Harrington JW Jr (eds). Springer: Dordrecht, The Netherlands, 461 – 490.
dc.identifier.citedreferenceWu Y, Raman S. 1998. The summertime Great Plains low level jet and the effect of its origin on moisture transport. Bound.‐Layer Meteorol. 88: 445 – 466, doi: 10.1023/A:1001518302649.
dc.identifier.citedreferenceZhang H, Huang GH, Wang D, Zhang X. 2011. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. J. Hydrol. 396: 94 – 103, doi: 10.1016/j.jhydrol.2010.10.037.
dc.identifier.citedreferenceZhong S, Fast JD, Bian X. 1996. A Case Study of the Great Plains Low‐Level Jet Using Wind Profiler Network Data and a High‐Resolution Mesoscale Model. Mon. Wea. Rev. 124: 785 – 806.
dc.identifier.citedreferenceAnderson CJ, Arritt RW. 2001. Representation of summertime low‐level jets in the central United States by the NCEP–NCAR reanalysis. J. Clim. 14: 234 – 247, doi: 10.1175/1520-0442(2001)014<0234:ROSLLJ>2.0.CO;2.
dc.identifier.citedreferenceBanta RM, Newsom RK, Lundquist JK, Pichugina YL, Coulter RL, Mahrt L. 2002. Nocturnal low‐level jet characteristics over Kansas during CASES‐99. Bound.‐Layer Meteorol. 105: 221 – 252, doi: 10.1023/A:1019992330866.
dc.identifier.citedreferenceBlackadar AK. 1957. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Meteorol. Soc. 38: 283 – 290.
dc.identifier.citedreferenceBonner WD. 1966. Case study of thunderstorm activity in relation to the low‐level jet. Mon. Weather Rev. 94: 167 – 178, doi: 10.1175/1520-0493(1966)094<0167:CSOTAI>2.3.CO;2.
dc.identifier.citedreferenceBonner WD. 1968. Climatology of the low‐level jet. Mon. Weather Rev. 96: 833 – 850, doi: 10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.
dc.identifier.citedreferenceBukovsky MS. 2012. Temperature trends in the NARCCAP regional climate models. J. Clim. 25: 3985 – 3991, doi: 10.1175/JCLI-D-11-00588.1.
dc.identifier.citedreferenceBukovsky MS, Gochis DJ, Mearns LO. 2013. Toward assessing NARCCAP regional climate model credibility for the North American Monsoon: current climate simulations. J. Clim. 26: 8802 – 8826, doi: 10.1175/JCLI-D-12-00538.1.
dc.identifier.citedreferenceCarr FH, Millard JP. 1985. A composite study of comma clouds and their association with severe weather over the Great Plains. Mon. Weather Rev. 113: 370 – 387, doi: 10.1175/1520-0493(1985)113<0370:ACSOCC>2.0.CO;2.
dc.identifier.citedreferenceCaya D, Laprise R. 1999. A semi‐implicit semi‐Lagrangian regional climate model: The Canadian RCM. Mon. Weather Rev. 127: 341 – 362, doi: 10.1175/1520-0493(1999)127<0341:ASISLR>2.0.CO;2.
dc.identifier.citedreferenceCerezo‐Mota R, Allen M, Jones R. 2011. Mechanisms controlling precipitation in the northern portion of the North American monsoon. J. Clim. 24: 2771 – 2783, doi: 10.1175/2011JCLI3846.1.
dc.identifier.citedreferenceCharney JJ, Bian X, Potter BE, Heilman WE. 2003. Low level jet impacts on fire evolution in the Mack Lake and other severe wildfires. In Proceedings, 5th Symposium on Fire and Forest Meteorology, American Meteorological Society, Boston, MA, USA.
dc.identifier.citedreferenceCook KH, Vizy EK. 2010. Hydrodynamics of the Caribbean low‐level jet and its relationship to precipitation. J. Clim. 23: 1477 – 1494, doi: 10.1175/2009JCLI3210.1.
dc.identifier.citedreferenceCook KH, Vizy EK, Launer ZS, Patricola CM. 2008. Springtime intensification of the Great Plains low‐level jet and Midwest precipitation in GCM simulations of the twenty‐first century. J. Clim. 21: 6321 – 6340, doi: 10.1175/2008JCLI2355.1.
dc.identifier.citedreferenceDavis RE, Hayden BP, Gay DA, Phillips WL, Jones GV. 1997. The North Atlantic subtropical anticyclone. J. Clim. 10: 728 – 744, doi: 10.1175/1520-0442(1997)010<0728:TNASA>2.0.CO;2.
dc.identifier.citedreferenceDoubler DL, Winkler JA, Bian X, Zhong S, Walters CK. 2015. A NARR‐derived climatology of southerly and northerly low‐level jets over North America and coastal environs. J. Appl. Meteorol. Climatol. 54: 1596 – 1619, doi: 10.1175/JAMC-D-14-0311.1.
dc.identifier.citedreferenceDu Y, Rotunno R. 2014. A simple analytical model of the nocturnal low‐level jet over the Great Plains of the United States. J. Atmos. Sci. 71: 3674 – 3683, doi: 10.1175/JAS-D-14-0060.1.
dc.identifier.citedreferenceGhan SJ, Bian X, Corsetti L. 1996. Simulation of the Great Plains low‐level jet and associated clouds by general circulation models. Mon. Weather Rev. 124: 1388 – 1408, doi: 10.1175/1520-0493(1996)124<1388:SOTGPL>2.0.CO;2.
dc.identifier.citedreferenceGrell GA, Devenyi D. 2002. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 29: 1693 – 1697, doi: 10.1029/2002gl015311.
dc.identifier.citedreferenceHelfand HM, Schubert SD. 1995. Climatology of the simulated Great Plains low‐level jet and its contributions to the continental moisture budget of the United States. J. Clim. 8: 784 – 806, doi: 10.1175/1520-0442(1995)008<0784:COTSGP>2.0.CO;2.
dc.identifier.citedreferenceHolton JR. 1967. The diurnal boundary layer wind oscillation above sloping terrain. Tellus 19: 199 – 205, doi: 10.1111/j.2153-3490.1967.tb01473.x.
dc.identifier.citedreferenceJones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB. 2004. Generating High Resolution Climate Change Scenarios Using PRECIS. Met Office Hadley Centre: Exeter, UK.
dc.identifier.citedreferenceKanamitsu M, Ebisuzaki W, Woollen J, Yang S‐K, Hnilo JJ, Fiorino M, Potter GL. 2002. NCEP–DOE AMIP‐II Reanalysis (R‐2). Bull. Am. Meteorol. Soc. 83: 1631 – 1643, doi: 10.1175/BAMS-83-11-1631.
dc.identifier.citedreferenceLaprise R, Caya D, Giguère M, Bergeron G, Côté H, Blanchet JP, Boer GJ, McFarlane N. 1998. Climate and climate change in western Canada as simulated by the Canadian Regional Climate Model. Atmosphere‐Ocean 36: 119 – 167, doi: 10.1080/07055900.1998.9649609.
dc.identifier.citedreferenceLi B, Sain S, Mearns LO, Anderson HA, Kovats S, Ebi KL, Bekkedal MYV, Kanared MS, Patz JA. 2012. The impact of extreme heat on morbidity in Milwaukee, Wisconsin. Clim. Change 110: 959 – 976, doi: 10.1007/s10584-011-0120-y.
dc.identifier.citedreferenceLiang XZ, Li L, Kunkel KE, Ting M, Wang JXL. 2004. Regional climate model simulation of US precipitation during 1982–2002. Part I: annual cycle. J. Clim. 17: 3510 – 3529, doi: 10.1175/1520-0442(2004)017<3510:RCMSOU>2.0.CO;2.
dc.identifier.citedreferenceMeans LL. 1954. A study of the mean southerly wind maximum in low levels associated with a period of summer precipitation in the Middle West. Bull. Am. Meteorol. Soc. 35: 166 – 170.
dc.identifier.citedreferenceMearns L, McGinnis S, Arritt R, Biner S, Duffy P, Gutowski W, Held I, Jones R, Leung R, Nunes A, Snyder M, Caya D, Correia J, Flory D, Herzmann D, Laprise R, Moufouma‐Okia W, Takle G, Teng H, Thompson J, Tucker S, Wyman B, Anitha A, Buja L, Macintosh C, McDaniel L, O’Brien T, Qian Y, Sloan L, Strand G, Zoellick C. 2007. (updated 2014). The North American Regional Climate Change Assessment Program dataset. National Center for Atmospheric Research Earth System Grid Data Portal: Boulder, CO. doi: 10.5065/D6RN35ST. http://www.narccap.ucar.edu/index.html (accessed 29 October 2013).
dc.identifier.citedreferenceMearns LO, Gutowski WJ, Jones R, Leung L, McGinnis S, Nunes AMB, Qian Y. 2009. A regional climate change assessment program for North America. Eos 90: 311 – 312, doi: 10.1029/2009EO360002.
dc.identifier.citedreferenceMearns LO, Arritt R, Biner S, Bukovsky M, Sain S, Caya D, Flory D, Gutowski W, Jones R, Moufouma‐Okia W, Leung R, Qian Y, McGinnis S, McDaniel L, Nunes A, Roads J, Sloan L, Snyder M, Takle G, Laprise R. 2012. The North American Regional Climate Change Assessment Program: overview of Phase I results. Bull. Am. Meteorol. Soc. 93: 1337 – 1362, doi: 10.1175/BAMS-D-11-00223.1.
dc.identifier.citedreferenceMearns LO, Lettenmaier DP, McGinnis S. 2015. Uses of results of regional climate model experiments for impacts and adaptation studies: the example of NARCCAP. Curr. Clim. Change Rep. 1: 1 – 9, doi: 10.1007/s40641-015-0004-8.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.