Show simple item record

Walking reduces sensorimotor network connectivity compared to standing

dc.contributor.authorLau, Troy M
dc.contributor.authorGwin, Joseph T
dc.contributor.authorFerris, Daniel P
dc.date.accessioned2016-12-05T10:10:47Z
dc.date.available2016-12-05T10:10:47Z
dc.date.issued2014-02-13
dc.identifier.citationJournal of NeuroEngineering and Rehabilitation. 2014 Feb 13;11(1):14
dc.identifier.urihttp://dx.doi.org/10.1186/1743-0003-11-14
dc.identifier.urihttps://hdl.handle.net/2027.42/134575
dc.description.abstractAbstract Background Considerable effort has been devoted to mapping the functional and effective connectivity of the human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity of cortical activity during human standing and walking. Methods We recorded 248-channels of EEG as eight young healthy subjects stood and walked on a treadmill both while performing a visual oddball discrimination task and not performing the task. ICA parsed underlying electrocortical, electromyographic, and artifact sources from the EEG signals. Inverse source modeling methods and clustering algorithms localized posterior, anterior, prefrontal, left sensorimotor, and right sensorimotor clusters of electrocortical sources across subjects. We applied a directional measure of connectivity, conditional Granger causality, to determine the effective connectivity between electrocortical sources. Results Connections involving sensorimotor clusters were weaker for walking than standing regardless of whether the subject was performing the simultaneous cognitive task or not. This finding supports the idea that cortical involvement during standing is greater than during walking, possibly because spinal neural networks play a greater role in locomotor control than standing control. Conversely, effective connectivity involving non-sensorimotor areas was stronger for walking than standing when subjects were engaged in the simultaneous cognitive task. Conclusions Our results suggest that standing results in greater functional connectivity between sensorimotor cortical areas than walking does. Greater cognitive attention to standing posture than to walking control could be one interpretation of that finding. These techniques could be applied to clinical populations during gait to better investigate neural substrates involved in mobility disorders.
dc.titleWalking reduces sensorimotor network connectivity compared to standing
dc.typeArticleen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134575/1/12984_2013_Article_546.pdf
dc.language.rfc3066en
dc.rights.holderLau et al.; licensee BioMed Central Ltd.
dc.date.updated2016-12-05T10:10:48Z
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.