Show simple item record

How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?a)

dc.contributor.authorRosu, Mihaela
dc.contributor.authorBalter, James M.
dc.contributor.authorChetty, Indrin J.
dc.contributor.authorKessler, Marc L.
dc.contributor.authorMcShan, Daniel L.
dc.contributor.authorBalter, Peter
dc.contributor.authorTen Haken, Randall K.
dc.date.accessioned2017-01-06T20:45:03Z
dc.date.available2017-01-06T20:45:03Z
dc.date.issued2007-01
dc.identifier.citationRosu, Mihaela; Balter, James M.; Chetty, Indrin J.; Kessler, Marc L.; McShan, Daniel L.; Balter, Peter; Ten Haken, Randall K. (2007). "How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?a)." Medical Physics 34(1): 233-245.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134757
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpneumodynamics
dc.subject.otherMonte Carlo methods
dc.subject.otherprobability
dc.subject.otherlung
dc.subject.otherPneumodyamics, respiration
dc.subject.otherHemodynamics
dc.subject.otherConformal radiation treatment
dc.subject.otherImage analysis
dc.subject.otherTissues
dc.subject.otherRadiation therapy
dc.subject.otherMedical treatment planning
dc.subject.otherReal time information delivery
dc.subject.otherComputed tomography
dc.subject.otherAnatomy
dc.subject.otherLungs
dc.subject.otherMedical imaging
dc.subject.otherCancer
dc.subject.otherDosimetry
dc.subject.otherMonte Carlo
dc.subject.other4D datasets
dc.subject.other4D treatment planning
dc.subject.otherorgan deformation
dc.subject.othermedical image processing
dc.subject.otherimage registration
dc.subject.otherdosimetry
dc.subject.otherradiation therapy
dc.titleHow extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?a)
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumThe University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109‐0010
dc.contributor.affiliationumThe University of Michigan, Department of Radiation Oncology, Ann Arbor, Michigan 48109‐0010
dc.contributor.affiliationotherThe University of Texas M.D. Anderson Cancer Center, Department of Radiation Physics, Houston, Texas 77030‐0547
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134757/1/mp0624.pdf
dc.identifier.doi10.1118/1.2400624
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceJ. Wong et al., “ The use of active breathing control (ABC) to reduce margin for breathing motion,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(99)00056‐5 --> 44, 911 – 999 ( 1999 ).
dc.identifier.citedreferenceJ. W. Wolthaus et al., “ Mid‐ventilation CT scan construction from four‐dimensional respiration‐correlated CT scans for radiotherapy planning of lung cancer patients,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2006.04.031 --> 65, 1560 – 1571 ( 2006 ).
dc.identifier.citedreferenceJ. Liang et al., “ Minimization of target margin by adapting treatment planning to target respiratory motion,” Int. J. Radiat. Oncol., Biol., Phys., Suppl. IOBSDC --> 0145‐1464 --> 57, Suppl. 1, S233 – S234 ( 2003 ).
dc.identifier.citedreferenceS. Shimizu et al., “ Impact of respiratory movement on the computed tomographic images of small lung tumors in three‐dimensional (3D) radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(99)00352‐1 --> 46, 1127 – 1133 ( 2000 ).
dc.identifier.citedreferenceJ. M. Balter et al., “ Uncertainties in CT‐based radiation therapy treatment planning associated with patient breathing,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(96)00275‐1 --> 36, 167 – 174 ( 1996 ).
dc.identifier.citedreferenceD. Yan et al., “ Target margin for respiratory motion: Optimal patient/organ positioning for treatment planning is critical,” Radiother. Oncol. RAONDT --> 0167‐8140 --> 64, Supplement 1, S259 – S260 ( 2002 ).
dc.identifier.citedreferenceM. J. Murphy et al., “ The effectiveness of breath‐holding to stabilize lung and pancreas tumors during radiosurgery,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(01)02822‐X --> 53, 475 – 482 ( 2002 ).
dc.identifier.citedreferenceL. Kestin et al., “ Breathing variation during thoracic radiations for adaptive radiotherapy of lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 60, S610 ( 2004 ).
dc.identifier.citedreferenceA. E. Lujan, J. M. Balter, and R. K. Ten Haken, “ A method for incorporating organ motion due to breathing into 3D dose calculations: Sensitivity to variations in motion,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1609057 --> 30, 2643 – 2649 ( 2003 ).
dc.identifier.citedreferenceM. Engelsman et al., “ The effect of breathing and set‐up errors on the cumulative dose to a lung tumor,” Radiother. Oncol. RAONDT --> 0167‐8140 --> 10.1016/S0167‐8140(01)00349‐8 --> 60, 95 – 105 ( 2001 ).
dc.identifier.citedreferenceS. Flampouri et al., “ Estimation of the delivered patient dose in lung IMRT treatment based on deformable registration of 4D‐CT data and Monte Carlo simulations,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/51/11/006 --> 51, 2763 – 2779 ( 2006 ).
dc.identifier.citedreferenceM. Rosu et al., “ The impact of 4D breathing motion effects versus tissue heterogeneity in lung cancer treatment planning,” Med. Phys. MPHYA6 --> 0094‐2405 --> 33, 2232 ( 2006 ).
dc.identifier.citedreferenceY. Seppenwoolde et al., “ Precise and real‐time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(02)02803‐1 --> 53, 822 – 834 ( 2002 ).
dc.identifier.citedreferenceY. Seppenwoolde et al., “ Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(02)03986‐X --> 55, 724 – 735 ( 2003 ).
dc.identifier.citedreferenceG. J. Kutcher and C. Burman, “ Calculation of complication probability factors for non‐uniform normal tissue irradiation: The effective volume method,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 16, 1623 – 1630 ( 1989 ).
dc.identifier.citedreferenceJ. Lyman, “ Complication probability as assessed from dose volume histograms,” Radiat. Res. RAREAE --> 0033‐7587 --> 104, S13 – 19 ( 1985 ).
dc.identifier.citedreferenceA. Niemierko, “ A generalized concept of equivalent uniform dose (EUD),” Med. Phys. MPHYA6 --> 0094‐2405 --> 26, 1100 ( 1999 ).
dc.identifier.citedreferenceM. Rosu et al., “ Dose reconstruction in deforming lung anatomy: Dose grid size effects and clinical implications,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1949749 --> 32, 2487 – 2495 ( 2005 ).
dc.identifier.citedreferenceI. J. Chetty et al., “ Reporting and analyzing statistical uncertainties in Monte Carlo‐based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 65, 1249 – 1259 ( 2006 ).
dc.identifier.citedreferenceI. J. Chetty et al., “ Photon beam relative dose validation of the DPM Monte Carlo code in lung‐equivalent media,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1555671 --> 30, 563 – 573 ( 2003 ).
dc.identifier.citedreferenceJ. Sempau, S. J. Wilderman, and A. F. Bielajew, “ DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/45/8/315 --> 45, 2263 – 2291 ( 2000 ).
dc.identifier.citedreferenceE. Schreibmann, G. T. Chen, and L. Xing, “ Image interpolation in 4D CT using a B‐Spline deformable registration model,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 64, 1537 – 1550 ( 2006 ).
dc.identifier.citedreferenceN. Wink, C. Panknin, and T. D. Solberg, “ Phase versus amplitude sorting of 4D‐CT data,” J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 7, 77 – 85 ( 2006 ).
dc.identifier.citedreferenceM. J. Fitzpatrick et al., “ Displacement‐based binning of time‐dependent computed tomography image data sets,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2044427 --> 33, 235 – 246 ( 2006 ).
dc.identifier.citedreferenceJ. Nocedal and S. Wright, Numerical Optimization ( Springer‐Verlag, New York, 1999 ).
dc.identifier.citedreferenceM. L. Kessler et al., “ Deformable image registration using multiresolution B‐splines,” Med. Phys. MPHYA6 --> 0094‐2405 --> 31, 1792 ( 2004 ).
dc.identifier.citedreferenceM. L. Kessler and M. Roberson, “ Image registration and data fusion for radiotherapy treatment planning,” in New Technologies in Radiation, edited by W. Schlegel, T. Bortfeld, and A. L. Grosu ( Springer‐Verlag, New York, 2005 ), pp. 41 – 52.
dc.identifier.citedreferenceM. Unser, “ Splines: a perfect fit for signal and image processing,” IEEE Signal Process. Mag. ISPRE6 --> 1053‐5888 --> 10.1109/79.799930 --> 16, 22 – 38 ( 1999 ).
dc.identifier.citedreferenceA. E. Lujan et al., “ A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598577 --> 26, 715 – 720 ( 1999 ).
dc.identifier.citedreferenceS. S. Vedam et al., “ Predicting respiratory motion for four‐dimensional radiotherapy,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1771931 --> 31, 2274 – 2283 ( 2004 ).
dc.identifier.citedreferenceG. C. Sharp et al., “ Prediction of respiratory tumour motion for real‐time image‐guided radiotherapy,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/3/006 --> 49, 425 – 440 ( 2004 ).
dc.identifier.citedreferenceP. J. Keall et al., “ Time—The fourth dimension in radiotherapy (ASTRO Panel Discussion),” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(03)00500‐5 -->, 57, S8 – 9 ( 2003 ).
dc.identifier.citedreferenceT. Pan et al., “ 4D‐CT imaging of a volume influenced by respiratory motion on multi‐slice CT,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1639993 --> 31, 333 – 340 ( 2004 ).
dc.identifier.citedreferenceD. Low et al., A method for the reconstruction of four‐dimensional synchronized CT scans acquired during free breathing, Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1576230 --> 30, 1254 – 1263 ( 2003 ).
dc.identifier.citedreferenceM. Schwarz et al., “ Impact of geometrical uncertainties on 3D CRT and IMRT dose distributions for lung cancer treatment,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 65, 1260 – 1269 ( 2006 ).
dc.identifier.citedreferenceS. S. Vedam et al., “ Acquiring a four‐dimensional computed tomography dataset using an external respiratory signal,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/48/1/304 --> 48, 45 – 62 ( 2003 ).
dc.identifier.citedreferenceD. Mah et al., “ Technical aspects of the deep inspiration breath‐hold technique in the treatment of thoracic cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(00)00747‐1 --> 48, 1175 – 1185 ( 2000 ).
dc.identifier.citedreferenceK. E. Rosenzweig et al., “ The deep inspiration breath‐hold technique in the treatment of inoperable non‐small‐cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(00)00583‐6 -->, 48, 81 – 87 ( 2000 ).
dc.identifier.citedreferenceJ. Hanley et al., “ Deep inspiration breath‐hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(99)00154‐6 --> 45, 603 – 611 ( 1999 ).
dc.identifier.citedreferenceL. A. Dawson et al., “ The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(01)02653‐0 --> 51, 1410 – 1421 ( 2001 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.