Show simple item record

Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelxâ /â mice and Amelx+/â lyonization

dc.contributor.authorHu, Yuanyuan
dc.contributor.authorSmith, Charles E.
dc.contributor.authorCai, Zhonghou
dc.contributor.authorDonnelly, Lorenza A.‐j.
dc.contributor.authorYang, Jie
dc.contributor.authorHu, Jan C.‐c.
dc.contributor.authorSimmer, James P.
dc.date.accessioned2017-01-06T20:45:13Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11
dc.identifier.citationHu, Yuanyuan; Smith, Charles E.; Cai, Zhonghou; Donnelly, Lorenza A.‐j. ; Yang, Jie; Hu, Jan C.‐c. ; Simmer, James P. (2016). "Enamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelxâ /â mice and Amelx+/â lyonization." Molecular Genetics & Genomic Medicine 4(6): 641-661.
dc.identifier.issn2324-9269
dc.identifier.issn2324-9269
dc.identifier.urihttps://hdl.handle.net/2027.42/134766
dc.description.abstractBackgroundAmelogenin is required for normal enamel formation and is the most abundant protein in developing enamel.MethodsAmelx+/+, Amelx+/â , and Amelxâ /â molars and incisors from C57BL/6 mice were characterized using RTâ PCR, Western blotting, dissecting and light microscopy, immunohistochemistry (IHC), transmission electron microscopy (TEM), scanning electron microscopy (SEM), backscattered SEM (bSEM), nanohardness testing, and Xâ ray diffraction.ResultsNo amelogenin protein was detected by Western blot analyses of enamel extracts from Amelxâ /â mice. Amelxâ /â incisor enamel averaged 20.3 ± 3.3 μm in thickness, or only 1/6th that of the wild type (122.3 ± 7.9 μm). Amelxâ /â incisor enamel nanohardness was 1.6 Gpa, less than half that of wildâ type enamel (3.6 Gpa). Amelx+/â incisors and molars showed vertical banding patterns unique to each tooth. IHC detected no amelogenin in Amelxâ /â enamel and varied levels of amelogenin in Amelx+/â incisors, which correlated positively with enamel thickness, strongly supporting lyonization as the cause of the variations in enamel thickness. TEM analyses showed characteristic mineral ribbons in Amelx+/+ and Amelxâ /â enamel extending from mineralized dentin collagen to the ameloblast. The Amelxâ /â enamel ribbons were not well separated by matrix and appeared to fuse together, forming plates. Xâ ray diffraction determined that the predominant mineral in Amelxâ /â enamel is octacalcium phosphate (not calcium hydroxyapatite). Amelxâ /â ameloblasts were similar to wildâ type ameloblasts except no Tomesâ processes extended into the thin enamel. Amelxâ /â and Amelx+/â molars both showed calcified nodules on their occlusal surfaces. Histology of D5 and D11 developing molars showed nodules forming during the maturation stage.ConclusionAmelogenin forms a resorbable matrix that separates and supports, but does not shape early secretoryâ stage enamel ribbons. Amelogenin may facilitate the conversion of enamel ribbons into hydroxyapatite by inhibiting the formation of octacalcium phosphate. Amelogenin is necessary for thickening the enamel layer, which helps maintain ribbon organization and development and maintenance of the Tomesâ process.We thoroughly characterized enamel formation in amelogenin null mice and determined that the mineral covering dentin in these animals is octacalcium phosphate. The initial enamel mineral has a ribbon shape, similar to the wild type. Thus, amelogenin is not required to shape the ribbons, as is currently thought, but is required to ensure that the final mineral phase is calcium hydroxyapatite.
dc.publisherJohn Wright & Sons Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otherincisor
dc.subject.othermolar
dc.subject.otheroctacalcium phosphate
dc.subject.otheramelogenesis imperfecta
dc.subject.otherAmeloblast
dc.subject.otherenamel
dc.subject.otheramorphous calcium phosphate
dc.subject.otheramelogenin
dc.titleEnamel ribbons, surface nodules, and octacalcium phosphate in C57BL/6 Amelxâ /â mice and Amelx+/â lyonization
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelHuman Genetics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134766/1/mgg3252_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134766/2/mgg3252-sup-0001-AppendixS1-21.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134766/3/mgg3252.pdf
dc.identifier.doi10.1002/mgg3.252
dc.identifier.sourceMolecular Genetics & Genomic Medicine
dc.identifier.citedreferenceSekiguchi, H., M. Kiyoshi, and M. Yakushiji. 2001b. DNA diagnosis of Xâ linked amelogenesis imperfecta using PCR detection method of the human amelogenin gene. Dent. Japan 37: 109 â 112.
dc.identifier.citedreferenceSimmer, J. P., C. C. Hu, E. C. Lau, P. Sarte, H. C. Slavkin, and A. G. Fincham. 1994a. Alternative splicing of the mouse amelogenin primary RNA transcript. Calcif. Tissue Int. 55: 302 â 310.
dc.identifier.citedreferenceSimmer, J. P., E. C. Lau, C. C. Hu, T. Aoba, M. Lacey, D. Nelson, et al. 1994b. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif. Tissue Int. 54: 312 â 319.
dc.identifier.citedreferenceSire, J. Y. 1994. Light and TEM study of nonregenerated and experimentally regenerated scales of Lepisosteus oculatus (Holostei) with particular attention to ganoine formation. Anat. Rec. 240: 189 â 207.
dc.identifier.citedreferenceSire, J. Y. 1995. Ganoine formation in the scales of primitive actinopterygian fishes, lepisosteids and polypterids. Connect. Tissue Res. 33: 213 â 222.
dc.identifier.citedreferenceSire, J. Y., J. Geraudie, F. J. Meunier, and L. Zylberberg. 1987. On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). Am. J. Anat. 180: 391 â 402.
dc.identifier.citedreferenceSire, J. Y., S. Delgado, and M. Girondot. 2006. The amelogenin story: origin and evolution. Eur. J. Oral Sci. 114 ( Suppl. 1 ): 64 â 77.
dc.identifier.citedreferenceSire, J. Y., Y. Huang, W. Li, S. Delgado, M. Goldberg, and P. K. Denbesten. 2012. Evolutionary story of mammalianâ specific amelogenin exons 4, â 4bâ , 8, and 9. J. Dent. Res. 91: 84 â 89.
dc.identifier.citedreferenceSkobe, Z. 2006. SEM evidence that one ameloblast secretes one keyholeâ shaped enamel rod in monkey teeth. Eur. J. Oral Sci. 114 ( Suppl. 1 ): 338 â 342; discussion 349â 50, 382.
dc.identifier.citedreferenceSmith, C. E., Y. Hu, A. S. Richardson, J. D. Bartlett, J. C. Hu, and J. P. Simmer. 2011a. Relationships between protein and mineral during enamel development in normal and genetically altered mice. Eur. J. Oral Sci. 119 ( Suppl. 1 ): 125 â 135.
dc.identifier.citedreferenceSmith, C. E., A. S. Richardson, Y. Hu, J. D. Bartlett, J. C. Hu, and J. P. Simmer. 2011b. Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20. J. Biol. Chem. 286: 18149 â 18160.
dc.identifier.citedreferenceSnead, M. L., M. Zeichnerâ David, T. Chandra, K. J. Robson, S. L. Woo, and H. C. Slavkin. 1983. Construction and identification of mouse amelogenin cDNA clones. Proc. Natl Acad. Sci. USA 80: 7254 â 7258.
dc.identifier.citedreferenceSnead, M. L., E. C. Lau, M. Zeichnerâ David, A. G. Fincham, S. L. Woo, and H. C. Slavkin. 1985. DNA sequence for cloned cDNA for murine amelogenin reveal the amino acid sequence for enamelâ specific protein. Biochem. Biophys. Res. Commun. 129: 812 â 818.
dc.identifier.citedreferenceSnead, M. L., W. Luo, E. C. Lau, and H. C. Slavkin. 1988. Spatialâ and temporalâ restricted pattern for amelogenin gene expression during mouse molar tooth organogenesis. Development 104: 77 â 85.
dc.identifier.citedreferenceSnead, M. L., D. H. Zhu, Y. Lei, W. Luo, P. O. Jr Bringas, H. M. Sucov, et al. 2011. A simplified genetic design for mammalian enamel. Biomaterials 32: 3151 â 3157.
dc.identifier.citedreferenceTakagi, T., M. Suzuki, T. Baba, K. Minegishi, and S. Sasaki. 1984. Complete amino acid sequence of amelogenin in developing bovine enamel. Biochem. Biophys. Res. Commun. 121: 592 â 597.
dc.identifier.citedreferenceTomazic, B., M. Tomson, and G. H. Nancollas. 1975. Growth of calcium phosphates on hydroxyapatite crystals: the effect of magnesium. Arch. Oral Biol. 20: 803 â 808.
dc.identifier.citedreferenceTomazic, B., M. Tomson, and G. H. Nancollas. 1976. The growth of calcium phosphates on natural enamel. Calcif. Tissue Res. 19: 263 â 271.
dc.identifier.citedreferenceWakida, K., N. Amizuka, C. Murakami, T. Satoda, M. Fukae, J. P. Simmer, et al. 1999. Maturation ameloblasts of the porcine tooth germ do not express amelogenin. Histochem. Cell Biol. 111: 297 â 303.
dc.identifier.citedreferenceWang, X., Z. Xing, X. Zhang, L. Zhu, and T. G. Diekwisch. 2013. Alternative splicing of the amelogenin gene in a caudate amphibian, Plethodon. PLoS ONE 8: e68965.
dc.identifier.citedreferenceWang, S. K., M. Choi, A. S. Richardson, B. M. Reid, B. P. Lin, S. J. Wang, et al. 2014. ITGB6 lossâ ofâ function mutations cause autosomal recessive amelogenesis imperfecta. Hum. Mol. Genet. 23: 2157 â 2163.
dc.identifier.citedreferenceWang, S.â K., Y. Hu, J. Yang, C. E. Smith, S. M. Nunez, A. S. Richardson, et al. 2015. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation. Mol. Genet. Genomic Med. 3: 302 â 319.
dc.identifier.citedreferenceWiedemannâ Bidlack, F. B., S. Y. Kwak, E. Beniash, Y. Yamakoshi, J. P. Simmer, and H. C. Margolis. 2011. Effects of phosphorylation on the selfâ assembly of native fullâ length porcine amelogenin and its regulation of calcium phosphate formation in vitro. J. Struct. Biol. 173: 250 â 260.
dc.identifier.citedreferenceWitkop, C. J. Jr. 1967. Partial expression of sexâ linked recessive amelogenesis imperfecta in females compatible with the lyon hypothesis. Oral Surg. Oral Med. Oral Pathol. 23: 174 â 182.
dc.identifier.citedreferenceWright, J. T., M. Torain, K. Long, K. Seow, P. Crawford, M. J. Aldred, et al. 2011. Amelogenesis imperfecta: genotypeâ phenotype studies in 71 families. Cells Tissues Organs 194: 279 â 283.
dc.identifier.citedreferenceWurtz, T., C. Lundmark, C. Christersson, J. W. Bawden, I. Slaby, and L. Hammarstrom. 1996. Expression of amelogenin mRNA sequences during development of rat molars. J. Bone Miner. Res. 11: 125 â 131.
dc.identifier.citedreferenceXu, L., H. Harada, and A. Taniguchi. 2008. The effects of LAMP1 and LAMP3 on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein. J. Biochem. 144: 531 â 537.
dc.identifier.citedreferenceYamakoshi, Y., A. S. Richardson, S. M. Nunez, F. Yamakoshi, R. N. Milkovich, J. C. Hu, et al. 2011. Enamel proteins and proteases in Mmp20 and Klk4 null and doubleâ null mice. Eur. J. Oral Sci. 119 ( Suppl. 1 ): 206 â 216.
dc.identifier.citedreferenceYuan, Z. A., P. M. Collier, J. Rosenbloom, and C. W. Gibson. 1996. Analysis of amelogenin mRNA during bovine tooth development. Arch. Oral Biol. 41: 205 â 213.
dc.identifier.citedreferenceZou, Y., H. Wang, J. L. Shapiro, C. T. Okamoto, S. J. Brookes, S. P. Lyngstadaas, et al. 2007. Determination of protein regions responsible for interactions of amelogenin with CD63 and LAMP1. Biochem. J. 408: 347 â 354.
dc.identifier.citedreferenceAldred, M. J., P. J. Crawford, E. Roberts, and N. S. Thomas. 1992. Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with Xâ linked amelogenesis imperfecta (AIH1). Hum. Genet. 90: 413 â 416.
dc.identifier.citedreferenceAssarafâ Weill, N., B. Gasse, N. Alâ Hashimi, S. Delgado, J. Y. Sire, and T. Davitâ Beal. 2013. Conservation of amelogenin gene expression during tetrapod evolution. J. Exp. Zool. B Mol. Dev. Evol. 320: 200 â 209.
dc.identifier.citedreferenceBartlett, J. D., J. P. Simmer, J. Xue, H. C. Margolis, and E. C. Moreno. 1996. Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene 183: 123 â 128.
dc.identifier.citedreferenceBartlett, J. D., R. L. Ball, T. Kawai, C. E. Tye, M. Tsuchiya, and J. P. Simmer. 2006. Origin, splicing, and expression of rodent amelogenin exon 8. J. Dent. Res. 85: 894 â 899.
dc.identifier.citedreferenceBeniash, E., R. A. Metzler, R. S. Lam, and P. U. Gilbert. 2009. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol. 166: 133 â 143.
dc.identifier.citedreferenceBlair, J. E., and S. B. Hedges. 2005. Molecular phylogeny and divergence times of deuterostome animals. Mol. Biol. Evol. 22: 2275 â 2284.
dc.identifier.citedreferenceBoyde, A. 1967. The development of enamel structure. Proc. R. Soc. Med. 60: 923 â 928.
dc.identifier.citedreferenceBraasch, I., A. R. Gehrke, J. J. Smith, K. Kawasaki, T. Manousaki, J. Pasquier, et al. 2016. The spotted gar genome illuminates vertebrate evolution and facilitates humanâ teleost comparisons. Nat. Genet. 48: 427 â 437.
dc.identifier.citedreferenceBrown, W. E. 1965. A mechanism for growth of apatitic crystals. in M. V. Stack and R. W. Fearnhead, eds. Tooth enamel its composition, properties, and fundamental structure. John Wright & Sons Ltd, Bristol. pp. 11 â 14.
dc.identifier.citedreferenceCai, Z., B. Lai, W. Yun, P. Ilinski, D. Legnini, J. Maser, et al. 2000. A hard Xâ ray scanning microscope for fluorescence imaging and microdiffraction at the advanced photon source. in W. Meyerâ Ilse, T. Warwick, and D. Attwood, eds. Xâ ray Microscopy: Proceedings of the Sixth International Conference. American Institute of Physics, 507: 472 â 477.
dc.identifier.citedreferenceChan, H. C., N. M. Estrella, R. N. Milkovich, J. W. Kim, J. P. Simmer, and J. C. Hu. 2011. Target gene analyses of 39 amelogenesis imperfecta kindreds. Eur. J. Oral Sci. 119 ( Suppl. 1 ): 311 â 323.
dc.identifier.citedreferenceCho, E. S., K. J. Kim, K. E. Lee, E. J. Lee, C. Y. Yun, M. J. Lee, et al. 2014. Alteration of conserved alternative splicing in AMELX causes enamel defects. J. Dent. Res. 93: 980 â 987.
dc.identifier.citedreferenceCollier, P. M., J. J. Sauk, S. J. Rosenbloom, Z. A. Yuan, and C. W. Gibson. 1997. An amelogenin gene defect associated with human Xâ linked amelogenesis imperfecta. Arch. Oral Biol. 42: 235 â 242.
dc.identifier.citedreferenceDejus, R., I. Vasserman, S. Sasaki, and E. Moog. 2002. A magnetic properties and spectral performanceâ , (2002) Report ANL/APS/TBâ 45. Argonne National Laboratory, Argonne, IL.
dc.identifier.citedreferenceFincham, A. G., and J. P. Simmer. 1997. Amelogenin proteins of developing dental enamel. Ciba Found. Symp., 205: 118 â 130; discussion 130â 4.
dc.identifier.citedreferenceFincham, A. G., A. B. Belcourt, J. D. Termine, W. T. Butler, and W. C. Cothran. 1981. Dental enamel matrix: sequences of two amelogenin polypeptides. Biosci. Rep. 1: 771 â 778.
dc.identifier.citedreferenceFincham, A. G., Y. Hu, E. C. Lau, H. C. Slavkin, and M. L. Snead. 1991. Amelogenin postâ secretory processing during biomineralization in the postnatal mouse molar tooth. Arch. Oral Biol. 36: 305 â 317.
dc.identifier.citedreferenceFincham, A. G., J. Moradianâ Oldak, and J. P. Simmer. 1999. The structural biology of the developing dental enamel matrix. J. Struct. Biol. 126: 270 â 299.
dc.identifier.citedreferenceFukumoto, S., T. Kiba, B. Hall, N. Iehara, T. Nakamura, G. Longenecker, et al. 2004. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J. Cell Biol. 167: 973 â 983.
dc.identifier.citedreferenceGartler, S. M., and A. D. Riggs. 1983. Mammalian Xâ chromosome inactivation. Annu. Rev. Genet. 17: 155 â 190.
dc.identifier.citedreferenceGasse, B., Y. Chiari, J. Silvent, T. Davitâ Beal, and J. Y. Sire. 2015. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol. Biol. 15: 47.
dc.identifier.citedreferenceGibson, C. W., E. E. Golub, W. Ding, H. Shimokawa, M. Young, J. D. Termine, et al. 1991. Identification of the leucineâ rich amelogenin peptide (LRAP) as the translation product of an alternatively spliced transcript. Biochem. Biophys. Res. Comm. 174: 1306 â 1312.
dc.identifier.citedreferenceGibson, C. W., Z. A. Yuan, B. Hall, G. Longenecker, E. Chen, T. Thyagarajan, et al. 2001. Amelogeninâ deficient mice display an amelogenesis imperfecta phenotype. J. Biol. Chem. 276: 31871 â 31875.
dc.identifier.citedreferenceGlas, J. E. 1962. Studies on the ultrastructure of dental enamel. II. The orientation of the apatite crystallites as deduced from xâ ray diffraction. Arch. Oral Biol. 7: 91 â 104.
dc.identifier.citedreferenceGoto, Y., E. Kogure, T. Takagi, S. Aimoto, and T. Aoba. 1993. Molecular conformation of porcine amelogenin in solution: three folding units at the Nâ terminal, central, and Câ terminal regions. J. Biochem. 113: 55 â 60.
dc.identifier.citedreferenceGreene, S. R., Z. A. Yuan, J. T. Wright, H. Amjad, W. R. Abrams, J. A. Buchanan, et al. 2002. A new frameshift mutation encoding a truncated amelogenin leads to Xâ linked amelogenesis imperfecta. Arch. Oral Biol. 47: 211 â 217.
dc.identifier.citedreferenceGysin, S., and P. Itin. 2015. Blaschko linear enamel defects â a marker for focal dermal hypoplasia: case report of focal dermal hypoplasia. Case Rep. Dermatol. 7: 90 â 94.
dc.identifier.citedreferenceHart, S., T. Hart, C. Gibson, and J. T. Wright. 2000. Mutational analysis of Xâ linked amelogenesis imperfecta in multiple families. Arch. Oral Biol. 45: 79 â 86.
dc.identifier.citedreferenceHart, P. S., M. J. Aldred, P. J. Crawford, N. J. Wright, T. C. Hart, and J. T. Wright. 2002. Amelogenesis imperfecta phenotypeâ genotype correlations with two amelogenin gene mutations. Arch. Oral Biol. 47: 261 â 265.
dc.identifier.citedreferenceHatakeyama, J., T. Sreenath, Y. Hatakeyama, T. Thyagarajan, L. Shum, C. W. Gibson, et al. 2003. The receptor activator of nuclear factorâ kappa B ligandâ mediated osteoclastogenic pathway is elevated in amelogeninâ null mice. J. Biol. Chem. 278: 35743 â 35748.
dc.identifier.citedreferenceHerold, R. C., A. Boyde, J. Rosenbloom, and E. T. Lally. 1987. Monoclonal antibody and immunogold cytochemical localization of amelogenins in bovine secretory amelogenesis. Arch. Oral Biol. 32: 439 â 444.
dc.identifier.citedreferenceHu, C. C., J. D. Bartlett, C. H. Zhang, Q. Qian, O. H. Ryu, and J. P. Simmer. 1996. Cloning, cDNA sequence, and alternative splicing of porcine amelogenin mRNAs. J. Dent. Res. 75: 1735 â 1741.
dc.identifier.citedreferenceHu, J. C., X. Sun, C. Zhang, and J. P. Simmer. 2001. A comparison of enamelin and amelogenin expression in developing mouse molars. Eur. J. Oral Sci. 109: 125 â 132.
dc.identifier.citedreferenceHu, J. C., Y. Hu, C. E. Smith, M. D. Mckee, J. T. Wright, Y. Yamakoshi, et al. 2008. Enamel defects and ameloblastâ specific expression in Enam knockâ out/lacz knockâ in mice. J. Biol. Chem. 283: 10858 â 10871.
dc.identifier.citedreferenceHu, J. C., R. Lertlam, A. S. Richardson, C. E. Smith, M. D. Mckee, and J. P. Simmer. 2011. Cell proliferation and apoptosis in enamelin null mice. Eur. J. Oral Sci. 119 ( Suppl. 1 ): 329 â 337.
dc.identifier.citedreferenceHu, J. C., H. C. Chan, S. G. Simmer, F. Seymen, A. S. Richardson, Y. Hu, et al. 2012. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS ONE 7: e52052.
dc.identifier.citedreferenceHu, J. C., Y. Hu, Y. Lu, C. E. Smith, R. Lertlam, J. T. Wright, et al. 2014. Enamelin is critical for ameloblast integrity and enamel ultrastructure formation. PLoS ONE 9: e89303.
dc.identifier.citedreferenceInai, T., T. Kukita, Y. Ohsaki, K. Nagata, A. Kukita, and K. Kurisu. 1991. Immunohistochemical demonstration of amelogenin penetration toward the dental pulp in the early stages of ameloblast development in rat molar tooth germs. Anat. Rec. 229: 259 â 270.
dc.identifier.citedreferenceKallenbach, E. 1973. The fine structure of Tomesâ process of rat incisor ameloblasts and its relationship to the elaboration of enamel. Tissue Cell 5: 501 â 524.
dc.identifier.citedreferenceKarg, H. A., E. H. Burger, D. M. Lyaruu, J. H. Woltgens, and A. L. Bronckers. 1997. Gene expression and immunolocalisation of amelogenins in developing embryonic and neonatal hamster teeth. Cell Tissue Res. 288: 545 â 555.
dc.identifier.citedreferenceKawasaki, K., and C. T. Amemiya. 2014. SCPP genes in the coelacanth: tissue mineralization genes shared by sarcopterygians. J. Exp. Zool. B Mol. Dev. Evol. 322: 390 â 402.
dc.identifier.citedreferenceKawasaki, K., T. Suzuki, and K. M. Weiss. 2004. Genetic basis for the evolution of vertebrate mineralized tissue. Proc. Natl Acad. Sci. U S A 101: 11356 â 11361.
dc.identifier.citedreferenceKida, M., Y. Sakiyama, A. Matsuda, S. Takabayashi, H. Ochi, H. Sekiguchi, et al. 2007. A novel missense mutation (p. P52R) in amelogenin gene causing Xâ linked amelogenesis imperfecta. J. Dent. Res. 86: 69 â 72.
dc.identifier.citedreferenceKim, J.â W., J. P. Simmer, Y. Y. Hu, B. P.â L. Lin, C. Boyd, J. T. Wright, et al. 2004. Amelogenin p.M1T and p.W4S mutations underlying hypoplastic Xâ linked amelogenesis imperfecta. J. Dent. Res. 83: 378 â 383.
dc.identifier.citedreferenceKindelan, S. A., A. H. Brook, L. Gangemi, N. Lench, F. S. Wong, J. Fearne, et al. 2000. Detection of a novel mutation in Xâ linked amelogenesis imperfecta. J. Dent. Res. 79: 1978 â 1982.
dc.identifier.citedreferenceKwak, S. Y., F. B. Wiedemannâ Bidlack, E. Beniash, Y. Yamakoshi, J. P. Simmer, A. Litman, et al. 2009. Role of 20â kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J. Biol. Chem. 284: 18972 â 18979.
dc.identifier.citedreferenceLagerström, M., N. Dahl, L. Iselius, B. Bäckman, and U. Pettersson. 1990. Mapping of the gene for Xâ linked amelogenesis imperfecta by linkage analysis. Am. J. Hum. Genet. 46: 120 â 125.
dc.identifier.citedreferenceLagerström, M., N. Dahl, Y. Nakahori, Y. Nakagome, B. Backman, U. Landegren, et al. 1991. A deletion in the amelogenin gene (AMG) causes Xâ linked amelogenesis imperfecta (AIH1). Genomics 10: 971 â 975.
dc.identifier.citedreferenceLagerstromâ Fermer, M., M. Nilsson, B. Backman, E. Salido, L. Shapiro, U. Pettersson, et al. 1995. Amelogenin signal peptide mutation: correlation between mutations in the amelogenin gene (AMGX) and manifestations of Xâ linked amelogenesis imperfecta. Genomics 26: 159 â 162.
dc.identifier.citedreferenceLandis, W. J., and M. Navarro. 1983. Correlated physiochemical and age changes in embryonic bovine enamel. Calcif. Tissue Int. 35: 48 â 55.
dc.identifier.citedreferenceLandis, W. J., M. Navarro, J. R. Neuringer, and K. Kurz. 1984. Single bovine enamel particles examined by electron optics. J. Dent. Res. 63: 629 â 634.
dc.identifier.citedreferenceLandis, W. J., G. Y. Burke, J. R. Neuringer, M. C. Paine, A. Nanci, P. Bai, et al. 1988. Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis. Anat. Rec. 220: 233 â 238.
dc.identifier.citedreferenceLattanzi, W., M. C. Di Giacomo, G. M. Lenato, G. Chimienti, G. Voglino, N. Resta, et al. 2005. A large interstitial deletion encompassing the amelogenin gene on the short arm of the Y chromosome. Hum. Genet. 116: 395 â 401.
dc.identifier.citedreferenceLau, E. C., T. K. Mohandas, L. J. Shapiro, H. C. Slavkin, and M. L. Snead. 1989. Human and mouse amelogenin gene loci are on the sex chromosomes. Genomics 4: 162 â 168.
dc.identifier.citedreferenceLau, E. C., J. P. Simmer, P. Jr Bringas, D. D. Hsu, C. C. Hu, M. Zeichnerâ David, et al. 1992. Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity. Biochem. Biophys. Res. Commun. 188: 1253 â 1260.
dc.identifier.citedreferenceLe Norcy, E., S. Y. Kwak, F. B. Wiedemannâ Bidlack, E. Beniash, Y. Yamakoshi, J. P. Simmer, et al. 2011a. Leucineâ rich amelogenin peptides regulate mineralization in vitro. J. Dent. Res. 90: 1091 â 1097.
dc.identifier.citedreferenceLe Norcy, E., S. Y. Kwak, F. B. Wiedemannâ Bidlack, E. Beniash, Y. Yamakoshi, J. P. Simmer, et al. 2011b. Potential role of the amelogenin Nâ terminus in the regulation of calcium phosphate formation in vitro. Cells Tissues Organs 194: 188 â 193.
dc.identifier.citedreferenceLeblond, C. P., and H. Warshawsky. 1979. Dynamics of enamel formation in the rat incisor tooth. J. Dent. Res. 58: 950 â 975.
dc.identifier.citedreferenceLee, K. E., S. K. Lee, S. E. Jung, S. J. Song, S. H. Cho, Z. H. Lee, et al. 2011. A novel mutation in the AMELX gene and multiple crown resorptions. Eur. J. Oral Sci. 119 ( Suppl. 1 ): 324 â 328.
dc.identifier.citedreferenceLench, N. J., and G. B. Winter. 1995. Characterisation of molecular defects in Xâ linked amelogenesis imperfecta (AIH1). Hum. Mutat. 5: 251 â 259.
dc.identifier.citedreferenceLench, N. J., A. H. Brook, and G. B. Winter. 1994. SSCP detection of a nonsense mutation in exon 5 of the amelogenin gene (AMGX) causing Xâ linked amelogenesis imperfecta (AIH1). Hum. Mol. Genet. 3: 827 â 828.
dc.identifier.citedreferenceLi, W., C. Mathews, C. Gao, and P. K. Denbesten. 1998. Identification of two additional exons at the 3â ² end of the amelogenin gene. Arch. Oral Biol. 43: 497 â 504.
dc.identifier.citedreferenceLi, Y., W. S. Konicki, J. T. Wright, C. Suggs, H. Xue, M. A. Kuehl, et al. 2013. Mouse genetic background influences the dental phenotype. Cells Tissues Organs 198: 448 â 456.
dc.identifier.citedreferenceLibera, J., Z. Cai, B. Lai, and S. Xu. 2002. Integration of a hard Xâ ray microprobe with a diffractometer for microdiffraction. Rev. Sci. Instrum. 73: 1506 â 1508.
dc.identifier.citedreferenceLuo, W., H. C. Slavkin, and M. L. Snead. 1991. Cells from Hertwig’s epithelial root sheath do not transcribe amelogenin. J. Periodontal Res. 26: 42 â 47.
dc.identifier.citedreferenceLuo, Z. X., C. X. Yuan, Q. J. Meng, and Q. Ji. 2011. A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476: 442 â 445.
dc.identifier.citedreferenceLyon, M. F. 1961. Gene action in the Xâ chromosome of the mouse ( Mus musculus L.). Nature 190: 372 â 373.
dc.identifier.citedreferenceMeredith, R. W., G. Zhang, M. T. Gilbert, E. D. Jarvis, and M. S. Springer. 2014. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346: 1254390.
dc.identifier.citedreferenceMeyer, J. L., and E. D. Eanes. 1978. A thermodynamic analysis of the amorphous to crystalline calcium phosphate transformation. Calcif. Tissue Res. 25: 59 â 68.
dc.identifier.citedreferenceMoinichen, C. B., S. P. Lyngstadaas, and S. Risnes. 1996. Morphological characteristics of mouse incisor enamel. J. Anat. 189: 325 â 333.
dc.identifier.citedreferenceNanci, A., and H. Warshawsky. 1984. Characterization of putative secretory sites on ameloblasts of the rat incisor. Am. J. Anat. 171: 163 â 189.
dc.identifier.citedreferenceNanci, A., S. Zalzal, P. Lavoie, M. Kunikata, W. Chen, P. H. Krebsbach, et al. 1998. Comparative immunochemical analyses of the developmental expression and distribution of ameloblastin and amelogenin in rat incisors. J. Histochem. Cytochem. 46: 911 â 934.
dc.identifier.citedreferenceNear, T. J., R. I. Eytan, A. Dornburg, K. L. Kuhn, J. A. Moore, M. P. Davis, et al. 2012. Resolution of rayâ finned fish phylogeny and timing of diversification. Proc. Natl Acad. Sci. U S A 109: 13698 â 13703.
dc.identifier.citedreferenceNishio, C., R. Wazen, S. Kuroda, P. Moffatt, and A. Nanci. 2010. Disruption of periodontal integrity induces expression of apin by epithelial cell rests of Malassez. J. Periodontal Res. 45: 709 â 713.
dc.identifier.citedreferencePrakash, S. K., C. W. Gibson, J. T. Wright, C. Boyd, T. Cormier, R. Sierra, et al. 2005. Tooth enamel defects in mice with a deletion at the Arhgap6/AmelX locus. Calcif. Tissue Int. 77: 23 â 9.
dc.identifier.citedreferenceProstak, K., P. Seifert, and Z. Skobe. 1989. Enamel V. in R. Fearnhead, ed. Enamel V. Florence Publishers, Yokohama, Japan.
dc.identifier.citedreferenceQu, Q., T. Haitina, M. Zhu, and P. E. Ahlberg. 2015. New genomic and fossil data illuminate the origin of enamel. Nature 526: 108 â 111.
dc.identifier.citedreferenceRavassipour, D. B., P. S. Hart, T. C. Hart, A. V. Ritter, M. Yamauchi, C. Gibson, et al. 2000. Unique enamel phenotype associated with amelogenin gene (AMELX) codon 41 point mutation. J. Dent. Res. 79: 1476 â 1481.
dc.identifier.citedreferenceRisnes, S., D. Septier, D. Deville De Periere, and M. Goldberg. 2002. TEM observations on the ameloblast/enamel interface in the rat incisor. Connect. Tissue Res. 43: 496 â 504.
dc.identifier.citedreferenceRyu, O. H., C. C. Hu, C. Zhang, Q. Qian, J. Moradianâ Oldak, A. G. Fincham, et al. 1998. Proteolytic activity of opossum tooth extracts. Eur. J. Oral Sci. 106 ( Suppl. 1 ): 337 â 344.
dc.identifier.citedreferenceRyu, O. H., A. G. Fincham, C. C. Hu, C. Zhang, Q. Qian, J. D. Bartlett, et al. 1999. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J. Dent. Res. 78: 743 â 750.
dc.identifier.citedreferenceSalido, E. C., P. H. Yen, K. Koprivnikar, L. C. Yu, and L. J. Shapiro. 1992. The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes. Am. J. Hum. Genet. 50: 303 â 316.
dc.identifier.citedreferenceSchaefer, L., S. Prakash, and H. Y. Zoghbi. 1997. Cloning and characterization of a novel rhoâ type GTPaseâ activating protein gene (ARHGAP6) from the critical region for microphthalmia with linear skin defects. Genomics 46: 268 â 277.
dc.identifier.citedreferenceSekiguchi, H., S. Alaluusua, K. Minaguchi, and M. Yakushiji. 2001a. A new mutation in the amelogenin gene causes Xâ linked amelogenesis imperfecta. J. Dent. Res. 80 (IADR Abstract 722): 617.
dc.identifier.citedreferenceShapiro, J. L., X. Wen, C. T. Okamoto, H. J. Wang, S. P. Lyngstadaas, M. Goldberg, et al. 2007. Cellular uptake of amelogenin, and its localization to CD63, and Lamp1â positive vesicles. Cell. Mol. Life Sci. 64: 244 â 256.
dc.identifier.citedreferenceShimokawa, H., Y. Ogata, S. Sasaki, M. E. Sobel, C. I. Mcquillan, J. D. Termine, et al. 1987. Molecular cloning of bovine amelogenin cDNA. Adv. Dent. Res. 1: 293 â 297.
dc.identifier.citedreferenceSimmer, J. P., and A. G. Fincham. 1995. Molecular mechanisms of dental enamel formation. Crit. Rev. Oral Biol. Med. 6: 84 â 108.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.