Show simple item record

Cluster observations of non–time continuous magnetosonic waves

dc.contributor.authorWalker, Simon N.
dc.contributor.authorDemekhov, Andrei G.
dc.contributor.authorBoardsen, Scott A.
dc.contributor.authorGanushkina, Natalia Y.
dc.contributor.authorSibeck, David G.
dc.contributor.authorBalikhin, Michael A.
dc.date.accessioned2017-01-06T20:45:25Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationWalker, Simon N.; Demekhov, Andrei G.; Boardsen, Scott A.; Ganushkina, Natalia Y.; Sibeck, David G.; Balikhin, Michael A. (2016). "Cluster observations of non–time continuous magnetosonic waves." Journal of Geophysical Research: Space Physics 121(10): 9701-9716.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134777
dc.description.abstractEquatorial magnetosonic waves are normally observed as temporally continuous sets of emissions lasting from minutes to hours. Recent observations, however, have shown that this is not always the case. Using Cluster data, this study identifies two distinct forms of these non–temporally continuous emissions. The first, referred to as rising tone emissions, are characterized by the systematic onset of wave activity at increasing proton gyroharmonic frequencies. Sets of harmonic emissions (emission elements) are observed to occur periodically in the region ±10° off the geomagnetic equator. The sweep rate of these emissions maximizes at the geomagnetic equator. In addition, the ellipticity and propagation direction also change systematically as Cluster crosses the geomagnetic equator. It is shown that the observed frequency sweep rate is unlikely to result from the sideband instability related to nonlinear trapping of suprathermal protons in the wave field. The second form of emissions is characterized by the simultaneous onset of activity across a range of harmonic frequencies. These waves are observed at irregular intervals. Their occurrence correlates with changes in the spacecraft potential, a measurement that is used as a proxy for electron density. Thus, these waves appear to be trapped within regions of localized enhancement of the electron density.Key PointsThe rate of change of frequency of rising tone EMW is greatest in the vicinity of the geomagnetic equatorIt is highly unlikely that the modulation results from the sideband instabilityPropagation of EMW may be spatially restricted by narrow density irregularities
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetosonic waves
dc.subject.otherrising tone
dc.titleCluster observations of non–time continuous magnetosonic waves
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134777/1/jgra53007.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134777/2/jgra53007_am.pdf
dc.identifier.doi10.1002/2016JA023287
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRussell, C. T., R. E. Holzer, and E. J. Smith ( 1970 ), OGO 3 observations of ELF noise in the magnetosphere: 2. The nature of the equatorial noise, J. Geophys. Res., 75, 755 – 768, doi: 10.1029/JA075i004p00755.
dc.identifier.citedreferenceNěmec, F., O. Santolík, Z. Hrbáčková, J. S. Pickett, and N. Cornilleau‐Wehrlin ( 2015 ), Equatorial noise emissions with quasiperiodic modulation of wave intensity, J. Geophys. Res. Space Physics, 120, 2649 – 2661, doi: 10.1002/2014JA020816.
dc.identifier.citedreferenceO’Brien, T. P., and M. B. Moldwin ( 2003 ), Empirical plasmapause models from magnetic indices, Geophys. Res. Lett., 30 ( 4 ), 1152, doi: 10.1029/2002GL016007.
dc.identifier.citedreferenceOlsen, R. C., S. D. Shawhan, D. L. Gallagher, C. R. Chappell, and J. L. Green ( 1987 ), Plasma observations at the Earth’s magnetic equator, J. Geophys. Res., 92, 2385 – 2407, doi: 10.1029/JA092iA03p02385.
dc.identifier.citedreferenceOmura, Y., Y. Katoh, and D. Summers ( 2008 ), Theory and simulation of the generation of whistler‐mode chorus, J. Geophys. Res., 113, A04223, doi: 10.1029/2007JA012622.
dc.identifier.citedreferencePedersen, A., P. Décréau, C.‐P. Escoubet, G. Gusthafsson, H. Laakso, P.‐A. Lindqvist, B. Lybekk, A. Masson, F. Mozer, and A. Vaivads ( 2001 ), Four‐point high time resolution information on electron densities by the Electric Field Experiments (EFW) on Cluster, Ann. Geophys., 19, 1483 – 1489.
dc.identifier.citedreferencePerraut, S., A. Roux, P. Robert, R. Gendrin, J. A. Sauvaud, J. M. Bosqued, G. Kremser, and A. Korth ( 1982 ), A systematic study of ULF waves above f H + from GEOS 1 and 2 measurements and their relationship with proton ring distributions, J. Geophys. Res., 87, 6219 – 6236, doi: 10.1029/JA087iA08p06219.
dc.identifier.citedreferenceRoberts, C. S., and M. Schulz ( 1968 ), Bounce resonant scattering of particles trapped in the Earth’s magnetic field, J. Geophys. Res., 73 ( 23 ), 7361 – 7376.
dc.identifier.citedreferenceRussell, C. T., R. E. Holzer, and E. J. Smith ( 1969 ), OGO 3 observations of ELF noise in the magnetosphere: 1. Spatial extent and frequency of occurrence, J. Geophys. Res., 74, 755 – 777, doi: 10.1029/JA074i003p00755.
dc.identifier.citedreferenceSantolík, O., J. S. Pickett, D. A. Gurnett, M. Maksimovic, and N. Cornilleau‐Wehrlin ( 2002 ), Spatiotemporal variability and propagation of equatorial noise observed by Cluster, J. Geophys. Res., 107 ( A12 ), 1495, doi: 10.1029/2001JA009159.
dc.identifier.citedreferenceShklyar, D., and H. Matsumoto ( 2009 ), Oblique whistler‐mode waves in the inhomogeneous magnetospheric plasma: Resonant interactions with energetic charged particles, Surv. Geophys., 30 ( 2 ), 55 – 104, doi: 10.1007/s10712‐009‐9061‐7.
dc.identifier.citedreferenceTrakhtengerts, V. V., A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik, E. Macusova, D. A. Gurnett, J. S. Pickett, M. J. Ryecroft, and D. Nunn ( 2007 ), Formation of VLF chorus frequency spectrum: Cluster data and comparison with the backward wave oscillator model, Geophys. Res. Lett., 34, L02104, doi: 10.1029/2006GL027953.
dc.identifier.citedreferenceTrakhtengerts, V. Y. ( 1995 ), Magnetosphere cyclotron maser: Backward wave oscillator generation regime, J. Geophys. Res., 100 ( 9 ), 17,205 – 17,210.
dc.identifier.citedreferenceTrakhtengerts, V. Y. ( 1999 ), A generation mechanism for chorus emission, Ann. Geophys., 17, 95 – 100.
dc.identifier.citedreferenceTrakhtengerts, V. Y., A. G. Demekhov, E. E. Titova, B. V. Kozelov, O. Santolik, D. Gurnett, and M. Parrot ( 2004 ), Interpretation of cluster data on chorus emissions using the backward wave oscillator model, Phys. Plasmas, 11 ( 4 ), 1345 – 1351, doi: 10.1063/1.1667495.
dc.identifier.citedreferenceTsurutani, B. T., B. J. Falkowski, J. S. Pickett, O. P. Verkhoglyadova, O. Santolik, and G. S. Lakhina ( 2014 ), Extremely intense ELF magnetosonic waves: A survey of polar observations, J. Geophys. Res. Space Physics, 119, 964 – 977, doi: 10.1002/2013JA019284.
dc.identifier.citedreferenceWalker, S. N., and I. Moiseenko ( 2013 ), Determination of wave vectors using the phase differencing method, Ann. Geophys., 31 ( 9 ), 1611 – 1617, doi: 10.5194/angeo‐31‐1611‐2013.
dc.identifier.citedreferenceWalker, S. N., M. A. Balikhin, D. R. Shklyar, K. H. Yearby, P. Canu, C. M. Carr, and I. Dandouras ( 2015a ), Experimental determination of the dispersion relation of magnetosonic waves, J. Geophys. Res. Space Physics, 120, 9632 – 9650, doi: 10.1002/2015JA021746.
dc.identifier.citedreferenceWalker, S. N., M. A. Balikhin, P. Canu, N. Cornilleau‐Wehrlin, and I. Moiseenko ( 2015b ), Investigation of the Chirikov resonance overlap criteria for equatorial magnetosonic waves, J. Geophys. Res. Space Physics, 120, 8774 – 8781, doi: 10.1002/2015JA021718.
dc.identifier.citedreferenceWoolliscroft, L. J. C., H. S. C. Alleyne, C. M. Dunford, A. Sumner, J. A. Thompson, S. N. Walker, K. H. Yearby, A. Buckley, S. Chapman, and M. P. Gough ( 1997 ), The digital wave processing experiment on Cluster, Space Sci. Rev., 79, 209 – 231, doi: 10.1023/A:1004914211866.
dc.identifier.citedreferenceZhima, Z., L. Chen, H. Fu, J. Cao, R. B. Horne, and G. Reeves ( 2015 ), Observations of discrete magnetosonic waves off the magnetic equator, Geophys. Res. Lett., 42 ( 22 ), 9694 – 9701, doi: 10.1002/2015GL066255.
dc.identifier.citedreferenceArtemyev, A. V., D. Mourenas, O. V. Agapitov, and V. V. Krasnoselskikh ( 2015 ), Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes, Phys. Plasmas, 22 ( 6 ), 062901, doi: 10.1063/1.4922061.
dc.identifier.citedreferenceBalikhin, M. A., Y. Y. Shprits, S. N. Walker, L. Chen, N. Cornilleau‐Wehrlin, I. Dandouras, O. Santolik, C. Carr, K. H. Yearby, and B. Weiss ( 2015 ), Observations of discrete harmonics emerging from equatorial noise, Nat. Commun., 6, 7703, doi: 10.1038/ncomms8703.
dc.identifier.citedreferenceBalogh, A., et al. ( 1997 ), The Cluster magnetic field investigation, Space Sci. Rev., 79, 65 – 91, doi: 10.1023/A:1004970907748.
dc.identifier.citedreferenceBoardsen, S. A., D. L. Gallagher, D. A. Gurnett, W. K. Peterson, and J. L. Green ( 1992 ), Funnel‐shaped, low‐frequency equatorial waves, J. Geophys. Res., 97, 14,967 – 14,976, doi: 10.1029/92JA00827.
dc.identifier.citedreferenceBoardsen, S. A., G. B. Hospodarsky, C. A. Kletzing, R. F. Pfaff, W. S. Kurth, J. R. Wygant, and E. A. MacDonald ( 2014 ), Van Allen Probe observations of periodic rising frequencies of the fast magnetosonic mode, Geophys. Res. Lett., 41, 8161 – 8168, doi: 10.1002/2014GL062020.
dc.identifier.citedreferenceBoardsen, S. A., et al. ( 2016 ), Survey of the frequency dependent latitudinal distribution of the fast magnetosonic wave mode from Van Allen Probes electric and magnetic field instrument and integrated science waveform receiver plasma wave analysis, J. Geophys. Res. Space Physics, 121, 2902 – 2921, doi: 10.1002/2015JA021844.
dc.identifier.citedreferenceChen, L., and R. M. Thorne ( 2012 ), Perpendicular propagation of magnetosonic waves, Geophys. Res. Lett., 39, L14102, doi: 10.1029/2012GL052485.
dc.identifier.citedreferenceChen, L., R. M. Thorne, V. K. Jordanova, and R. B. Horne ( 2010 ), Global simulation of magnetosonic wave instability in the storm time magnetosphere, J. Geophys. Res., 115, A11222, doi: 10.1029/2010JA015707.
dc.identifier.citedreferenceCornilleau‐Wehrlin, N., et al. ( 1997 ), The Cluster Spatio‐Temporal Analysis of Field Fluctuations (STAFF) experiment, Space Sci. Rev., 79, 107 – 136.
dc.identifier.citedreferenceCurtis, S. A., and C. S. Wu ( 1979 ), Gyroharmonic emissions induced by energetic ions in the equatorial plasmasphere, J. Geophys. Res., 84, 2597 – 2607, doi: 10.1029/JA084iA06p02597.
dc.identifier.citedreferenceDemekhov, A. G., and V. Y. Trakhtengerts ( 1994 ), A mechanism of formation of pulsating aurorae, J. Geophys. Res., 99, 5831 – 5841, doi: 10.1029/93JA01804.
dc.identifier.citedreferenceEscoubet, C. P., R. Schmidt, and M. L. Goldstein ( 1997 ), Cluster—Science and mission overview, Space Sci. Rev., 79, 11 – 32.
dc.identifier.citedreferenceFu, H. S., J. B. Cao, Z. Zhima, Y. V. Khotyaintsev, V. Angelopoulos, O. Santolik, Y. Omura, U. Taubenschuss, L. Chen, and S. Y. Huang ( 2014 ), First observation of rising‐tone magnetosonic waves, Geophys. Res. Lett., 41 ( 21 ), 7419 – 7426, doi: 10.1002/2014GL061687.
dc.identifier.citedreferenceGulelmi, A. V., B. I. Klaine, and A. S. Potapov ( 1975 ), Excitation of magnetosonic waves with discrete spectrum in the equatorial vicinity of the plasmapause, Planet. Space Sci., 23, 279 – 286, doi: 10.1016/0032‐0633(75)90133‐6.
dc.identifier.citedreferenceGurnett, D. A. ( 1976 ), Plasma wave interactions with energetic ions near the magnetic equator, J. Geophys. Res., 81, 2765 – 2770, doi: 10.1029/JA081i016p02765.
dc.identifier.citedreferenceGustafsson, G., et al. ( 1997 ), The electric field and wave experiment for the Cluster mission, Space Sci. Rev., 79, 137 – 156.
dc.identifier.citedreferenceHorne, R. B., G. V. Wheeler, and H. S. C. K. Alleyne ( 2000 ), Proton and electron heating by radially propagating fast magnetosonic waves, J. Geophys. Res., 105, 27,597 – 27,610, doi: 10.1029/2000JA000018.
dc.identifier.citedreferenceHorne, R. B., R. M. Thorne, S. A. Glauert, N. P. Meredith, D. Pokhotelov, and O. Santolík ( 2007 ), Electron acceleration in the Van Allen radiation belts by fast magnetosonic waves, Geophys. Res. Lett., 34, L17107, doi: 10.1029/2007GL030267.
dc.identifier.citedreferenceKarpman, V. I., and D. R. Shklyar ( 1972 ), Nonlinear damping of potential monochromatic waves in an inhomogeneous plasma, Soviet J. Exp. Theor. Phys., 35 ( 3 ), 500 – 505.
dc.identifier.citedreferenceKarpman, V. I., Y. N. Istomin, and D. R. Shklyar ( 1974 ), Nonlinear theory of a quasimonochromatic whistler mode packet in inhomogeneous plasma, Plasma Phys., 16 ( 8 ), 685 – 703, doi: 10.1088/0032‐1028/16/8/001.
dc.identifier.citedreferenceLaakso, H., H. Junginger, R. Schmidt, A. Roux, and C. de Villedary ( 1990 ), Magnetosonic waves above fc(H+) at geostationary orbit—GEOS 2 results, J. Geophys. Res., 95, 10,609 – 10,621, doi: 10.1029/JA095iA07p10609.
dc.identifier.citedreferenceLi, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O. Le Contel, and J. W. Bonnell ( 2011 ), Typical properties of rising and falling tone chorus waves, Geophys. Res. Lett., 38, L14103, doi: 10.1029/2011GL047925.
dc.identifier.citedreferenceMa, Q., W. Li, L. Chen, R. M. Thorne, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, G. D. Reeves, M. G. Henderson, and H. E. Spence ( 2014 ), The trapping of equatorial magnetosonic waves in the Earth’s outer plasmasphere, Geophys. Res. Lett., 41, 6307 – 6313, doi: 10.1002/2014GL061414.
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, and R. R. Anderson ( 2008 ), Survey of magnetosonic waves and proton ring distributions in the Earth’s inner magnetosphere, J. Geophys. Res., 113, A06213, doi: 10.1029/2007JA012975.
dc.identifier.citedreferenceMin, K., and K. Liu ( 2016 ), Understanding the growth rate patterns of ion Bernstein instabilities driven by ring‐like proton velocity distributions, J. Geophys. Res. Space Physics, 121, 3036 – 3049, doi: 10.1002/2016JA022524.
dc.identifier.citedreferenceMourenas, D., A. V. Artemyev, O. V. Agapitov, and V. Krasnoselskikh ( 2013 ), Analytical estimates of electron quasi‐linear diffusion by fast magnetosonic waves, J. Geophys. Res. Space Physics, 118, 3096 – 3112, doi: 10.1002/jgra.50349.
dc.identifier.citedreferenceNakamura, S., Y. Omura, S. Machida, M. Shoji, M. Nose, and V. Angelopoulos ( 2014 ), Electromagnetic ion cyclotron rising tone emissions observed by THEMIS probes outside the plasmapause, J. Geophys. Res. Space Physics, 119, 1874 – 1886, doi: 10.1002/2013JA019146.
dc.identifier.citedreferenceNěmec, F., O. Santolík, K. Gereová, E. Macúšová, Y. de Conchy, and N. Cornilleau‐Wehrlin ( 2005 ), Initial results of a survey of equatorial noise emissions observed by the Cluster spacecraft, Planet. Space Sci., 53, 291 – 298, doi: 10.1016/j.pss.2004.09.055.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.