Show simple item record

MESSENGER survey of in situ low frequency wave storms between 0.3 and 0.7 AU

dc.contributor.authorBoardsen, S. A.
dc.contributor.authorJian, L. K.
dc.contributor.authorRaines, J. L.
dc.contributor.authorGershman, D. J.
dc.contributor.authorZurbuchen, T. H.
dc.contributor.authorRoberts, D. A.
dc.contributor.authorKorth, H.
dc.date.accessioned2017-01-06T20:45:34Z
dc.date.available2017-01-06T20:45:34Z
dc.date.issued2015-12
dc.identifier.citationBoardsen, S. A.; Jian, L. K.; Raines, J. L.; Gershman, D. J.; Zurbuchen, T. H.; Roberts, D. A.; Korth, H. (2015). "MESSENGER survey of in situ low frequency wave storms between 0.3 and 0.7 AU." Journal of Geophysical Research: Space Physics 120(12): 10,207-10,220.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134786
dc.description.abstractMErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetometer data was surveyed between 0.3 and 0.7 AU from 6 June 2007 to 23 March 2011 for low‐frequency wave (LFW) storms, when the magnetometer was sampling at a rate of at least 2 s−1. A total of 12,197 LFW events were identified, of which 5506 lasted 10 min or longer. The events have a high degree of polarization, are circularly polarized, with wave vectors nearly aligned or antialigned with the interplanetary magnetic field (IMF) at frequencies in the vicinity of the proton cyclotron frequency. These events are observed about 6% of the time, preferentially associated with radially directed inward or outward IMF. Their occurrence rate and median duration do not change much with R, where R is the heliocentric radial distance. For a narrow‐frequency window in the solar wind frame, left‐handed storms in the spacecraft frame have a power drop off that is roughly proportional to R−3 which is consistent with a source close the Sun, while right‐handed storms have a power drop off roughly proportional R−1 which is not consistent with a source close to the Sun. The power in the left‐handed LFW storms is on average greater than the right‐handed ones by a factor of 3. In the solar wind frame, the wave frequency decreases from 0.13 to 0.04 Hz moving from 0.3 to 0.7 AU, but the frequency normalized by the local proton cyclotron frequency does not change much with the running median varying from 0.35 to 0.5. The normalized frequency band widths of the wave power spectra increase slightly with R, possibly associated with energy dissipation.Key PointsMESSENGER observations of low‐frequency storms are surveyed between 0.3 and 0.7 AUThe occurrence rate of these storms is about 6 times larger than that of previous studiesThe radial power variation of the right handed storms is not consistent with a source near the Sun
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlow‐frequency storms
dc.subject.othersolar wind
dc.subject.otherinner heliosphere
dc.subject.otherion cyclotron waves
dc.titleMESSENGER survey of in situ low frequency wave storms between 0.3 and 0.7 AU
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134786/1/jgra52279.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134786/2/jgra52279_am.pdf
dc.identifier.doi10.1002/2015JA021506
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceOfman, L., A. Viñas, and S. P. Gary ( 2001 ), Constraints on the O +5 anisotropy in the solar corona, Astrophys. J., 547, L175.
dc.identifier.citedreferenceArthur, C. W., R. L. McPherron, and J. D. Means ( 1976 ), A comparative study of three techniques for using the spectral matrix in wave analysis, Radio Sci., 11 ( 10 ), 833 – 845, doi: 10.1029/RS011i010p00833.
dc.identifier.citedreferenceFowler, R. A., B. J. Kotick, and R. D. Elliot ( 1967 ), Polarization analysis of natural and artificially induced geomagnetic micropulsations, J. Geophys. Res., 72, 2871 – 2883, doi: 10.1029/JZ072i011p02871.
dc.identifier.citedreferenceGary, S. P., L. Yin, D. Winske, L. Ofman, B. E. Goldstein, and M. Neugebauer ( 2003 ), Consequences of proton and alpha anisotropies in the solar wind: Hybrid simulations, J. Geophys. Res., 108 ( A2 ), 1068, doi: 10.1029/2002JA009654.
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. M. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.
dc.identifier.citedreferenceGershman, D. J., G. Gloeckler, J. A. Gilbert, J. M. Raines, L. A. Fisk, S. C. Solomon, E. C. Stone, and T. H. Zurbuchen ( 2013 ), Observations of interstellar helium pickup ions in the inner heliosphere, J. Geophys. Res. Space Physics, 118, 1389 – 1402, doi: 10.1002/jgra.50227.
dc.identifier.citedreferenceHe, J., E. Marsch, C. Tu, S. Yao, and H. Tian ( 2011 ), Possible evidence of Alfvén‐cyclotron waves in the angle distribution of magnetic helicity of solar wind turbulence, Astrophys. J., 731, 85.
dc.identifier.citedreferenceHollweg, J. V. ( 1974 ), Transverse Alfvén waves in the solar wind: Arbitrary k, v 0, B 0, and |δ B |, J. Geophys. Res., 79 ( 10 ), 1539 – 1541, doi: 10.1029/JA079i010p01539.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, R. J. Strangeway, J. S. Leisner, and A. B. Galvin ( 2009 ), Ion cyclotron waves in the solar wind observed by STEREO near 1 AU, Astrophys. J., 701, L105, doi: 10.1088/0004-637X/701/2/L105.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, B. J. Anderson, S. A. Boardsen, R. J. Strangeway, M. M. Cowee, and A. Wennmacher ( 2010 ), Observations of ion cyclotron waves in the solar wind near 0.3 AU, J. Geophys. Res., 115, A12115, doi: 10.1029/2010JA015737.
dc.identifier.citedreferenceJian, L. K., H. Y. Wei, C. T. Russell, J. G. Luhmann, B. Klecker, N. Omidi, P. A. Isenberg, M. L. Goldstein, A. Figueroa‐Vinas, and X. Blanco‐Cano ( 2014 ), Electromagnetic waves near the proton cyclotron frequency: STEREO observations, Astrophys. J., 786, L123, doi: 10.1088/0004-637X/786/2/123.
dc.identifier.citedreferenceKasper, J. C., A. J. Lazarus, and S. P. Gary ( 2008 ), Hot solar‐wind helium: Direct evidence for local heating by Alfvén‐cyclotron dissipation, Phys. Rev. Lett., 101 ( 26 ), doi: 10.1103/PhysRevLett.101.261103.
dc.identifier.citedreferenceKhrabrov, A. V., and B. U. Sonnerup ( 1998 ), Error estimates for minimum variance analysis, J. Geophys. Res., 103 ( A4 ), 6641 – 6651, doi: 10.1029/97JA03731.
dc.identifier.citedreferenceKöhnlein, W. ( 1996 ), Radial dependence of solar wind parameters in the ecliptic (1.1 R ⊙ −61 AU), Sol. Phys., 169 ( 1 ), doi: 10.1007/BF00153841.
dc.identifier.citedreferenceMarsch, E., K.‐H. Mühlhäuser, H. Rosenbauer, R. Schwenn, and F. M. Neubauer ( 1982 ), Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87 ( A1 ), 35 – 51, doi: 10.1029/JA087iA01p00035.
dc.identifier.citedreferenceMurphy, N., E. J. Smith, B. T. Tsurutani, A. Balogh, and D. J. Southwood ( 1995 ), Further studies of waves accompanying the solar wind pick‐up of interstellar hydrogen, Space Sci. Rev., 72 ( 1–2 ), doi: 10.1007/BF00768819.
dc.identifier.citedreferenceOfman, L., S. P. Gary, and A. Viñas ( 2002 ), Resonant heating and acceleration of ions in coronal holes driven by cyclotron resonant spectra, J. Geophys. Res., 107 ( A12 ), 1461, doi: 10.1029/2002JA009432.
dc.identifier.citedreferenceOmidi, N., P. Isenberg, C. T. Russell, L. K. Jian, and H. Y. Wei ( 2014a ), Generation of ion cyclotron waves in the corona and solar wind, J. Geophys. Res. Space Physics, 119, 1442 – 1454, doi: 10.1002/2013JA019474.
dc.identifier.citedreferenceOmidi, N., C. T. Russell, L. K. Jian, P. Isenberg, and H. Y. Wei ( 2014b ), Generation and propagation of ion cyclotron waves in nonuniform magnetic field: Application to the corona and solar wind, J. Geophys. Res. Space Physics, 119, 8750 – 8763, doi: 10.1002/2014JA020315.
dc.identifier.citedreferencePodesta, J. J., and S. P. Gary ( 2011a ), Magnetic helicity spectrum of solar wind fluctuations as a function of the angle with respect to the local mean magnetic field, Astrophys. J., 734, 15.
dc.identifier.citedreferencePodesta, J. J., and S. P. Gary ( 2011b ), Effect of differential flow of alpha particles on proton pressure anisotropy instabilities in the solar wind, Astrophys. J., 742, 41, doi: 10.1088/0004-637X/742/1/41.
dc.identifier.citedreferenceRoberts, D. A., M. L. Goldstein, and L. W. Klein ( 1990 ), The amplitudes of interplanetary fluctuations: Stream structure, heliocentric distance, and frequency dependence, J. Geophys. Res., 95 ( A4 ), 4203 – 4216, doi: 10.1029/JA095iA04p04203.
dc.identifier.citedreferenceSteinberg, J. T., A. J. Lazarus, K. W. Ogilvie, R. Lepping, and J. Byrnes ( 1996 ), Differential flow between solar wind protons and alpha particles: First WIND observations, Geophys. Res. Lett., 23 ( 10 ), 1183 – 1186, doi: 10.1029/96GL00628.
dc.identifier.citedreferenceTsurutani, B. T., J. K. Arballo, J. Mok, E. J. Smith, G. M. Mason, and L. C. Tan ( 1994 ), Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE‐3 1 AU observations, Geophys. Res. Lett., 21, 633 – 636, doi: 10.1029/94GL00566.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214-007-9246-7.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.