Show simple item record

Electron contamination modeling and reduction in a 1 T open bore inline MRI‐linac system

dc.contributor.authorOborn, B. M.
dc.contributor.authorKolling, S.
dc.contributor.authorMetcalfe, P. E.
dc.contributor.authorCrozier, S.
dc.contributor.authorLitzenberg, D. W.
dc.contributor.authorKeall, P. J.
dc.date.accessioned2017-01-06T20:46:11Z
dc.date.available2017-01-06T20:46:11Z
dc.date.issued2014-05
dc.identifier.citationOborn, B. M.; Kolling, S.; Metcalfe, P. E.; Crozier, S.; Litzenberg, D. W.; Keall, P. J. (2014). "Electron contamination modeling and reduction in a 1 T open bore inline MRI‐linac system." Medical Physics 41(5): n/a-n/a.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134819
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherLinear accelerators
dc.subject.otherBiological material, e.g. blood, urine; Haemocytometers
dc.subject.otherInvolving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
dc.subject.othermagnetic deflector
dc.subject.otherMonte Carlo simulation
dc.subject.otherskin dose
dc.subject.otherelectron contamination
dc.subject.otherMRI‐linac
dc.subject.otherskin
dc.subject.otherphantoms
dc.subject.otherMonte Carlo methods
dc.subject.otherlinear accelerators
dc.subject.othercontamination
dc.subject.otherbiomedical MRI
dc.subject.otherMonte Carlo simulations
dc.subject.otherMagnetic resonance imaging
dc.subject.otherElectron scattering
dc.subject.otherPermanent magnets
dc.subject.otherLinear accelerators
dc.subject.otherMagnets
dc.subject.otherMagnetic fields
dc.subject.otherDosimetry
dc.subject.otherMagnetic resonance imaging
dc.subject.otherRadiation therapy
dc.subject.otherMonte Carlo methods
dc.subject.otherField size
dc.titleElectron contamination modeling and reduction in a 1 T open bore inline MRI‐linac system
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan Hospital and Health Systems, Ann Arbor, Michigan 48109
dc.contributor.affiliationotherSydney Medical School, University of Sydney, NSW 2006, Australia
dc.contributor.affiliationotherIllawarra Cancer Care Centre (ICCC), Wollongong, NSW 2500, Australia and Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500, Australia
dc.contributor.affiliationotherCentre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2500, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
dc.contributor.affiliationotherSchool of Information Technology and Electric Engineering, University of Queensland, QLD 4072, Australia
dc.contributor.affiliationotherSydney Medical School, University of Sydney, NSW 2006, Australia and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134819/1/mp1618.pdf
dc.identifier.doi10.1118/1.4871618
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceD. E. Constantin, R. Fahrig, and P. J. Keall, “ A study of the effect of in‐line and perpendicular magnetic fields on beam characteristics of electron guns in medical linear accelerators,” Med. Phys. 38 ( 7 ), 4174 – 4185 ( 2011 ). 10.1118/1.3600695
dc.identifier.citedreferenceJ. F. Dempsey, D. Benoit, J. R. Fitzsimmons, A. Haghighat, J. G. Li, D. A. Low, S. Mutic, J. R. Palta, H. E. Romeijn, and G. E. Sjoden, “ A device for realtime 3D image‐guided IMRT,” Int. J. Radiat. Oncol., Biol., Phys. 63 ( 2 ), S202 ( 2005 ). 10.1016/j.ijrobp.2005.07.349
dc.identifier.citedreferenceB. G. Fallone, B. Murray, S. Rathee, T. Stanescu, S. Steciw, S. Vidakovic, E. Blosser, and D. Tymofichuk, “ First MR images obtained during megavoltage photon irradiation from a prototype integrated linac‐MR system,” Med. Phys. 36, 2084 – 2088 ( 2009 ). 10.1118/1.3125662
dc.identifier.citedreferenceB. W. Raaymakers, J. J. W. Lagendijk, J. Overweg, J. G. M. Kok, A. J. E. Raaijmakers, E. M. Kerkhof, R. W. van der Put, I. Meijsing, S. P. M. Crijns, F. Benedosso, M. van Vulpen, C. H. W. de Graaff, J. Allen, and K. J. Brown, “ Integrating a 1.5 T MRI scanner with a 6 MV accelerator: Proof of concept,” Phys. Med. Biol. 54, N229 – N237 ( 2009 ). 10.1088/0031‐9155/54/12/N01
dc.identifier.citedreferenceA. J. E. Raaijmakers, B. W. Raaymakers, and J. J. W. Lagendijk, “ Experimental verification of magnetic field dose effects for the MRI‐accelerator,” Phys. Med. Biol. 52, 4283 – 4291 ( 2007 ). 10.1088/0031‐9155/52/14/017
dc.identifier.citedreferenceS. Agostinelli et al., “ Geant4‐a simulation toolkit,” Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 – 303 ( 2003 ). 10.1016/S0168‐9002(03)01368‐8
dc.identifier.citedreferenceL. Liu, H. Sanchez‐Lopez, F. Liu, and S. Crozier, “ Flanged‐edge transverse gradient coil design for a hybrid LINAC‐MRI system,” J. Magn. Reson. 226, 70 – 78 ( 2013 ). 10.1016/j.jmr.2012.11.017
dc.identifier.citedreferenceInternational Commission on Radiological Protection, “ ICRP Publication 60, 1990 Recomendations of the Internation Commission on Radiological Protection,” Annals of the ICRP 21 ( 1–3 ), 41 ( 1991 ).
dc.identifier.citedreferenceS. Kolling, B. Oborn, and P. Keall, “ Impact of the MLC on the MRI field distortion of a prototype MRI‐linac,” Med. Phys. 40 ( 12 ), 121705 (10pp.) ( 2013 ). 10.1118/1.4828792
dc.identifier.citedreferenceCOMSOL Multiphysics, Stockholm, Sweden.
dc.identifier.citedreferenceR. Sjogren and M. Karlsson, “ Influence of electron contamination on in vivo surface dosimetry for high‐energy photon beams,” Med. Phys. 25 ( 6 ), 916 – 921 ( 1998 ). 10.1118/1.598270
dc.identifier.citedreferenceM. J. Butson, T. P. Y. Wong, A. Law, M. Law, J. N. Mathur, and P. E. Metcalfe, “ Magnetic repulsion of linear accelerator contaminants,” Med. Phys. 23 ( 6 ), 953 – 955 ( 1996 ). 10.1118/1.597818
dc.identifier.citedreferenceP. A. Jursinic and T. R. Mackie, “ Characteristics of secondary electrons produced by 6, 10 and 24 MV x‐ray beams,” Phys. Med. Biol. 41, 1499 – 1509 ( 1996 ). 10.1088/0031‐9155/41/8/016
dc.identifier.citedreferenceD. M. D. Frye, B. R. Paliwal, B. R. Thomadsen, and P. Jursinic, “ Intercomparison of normalized head‐scatter factor measurement techniques,” Med. Phys. 22 ( 2 ), 249 – 253 ( 1995 ). 10.1118/1.597602
dc.identifier.citedreferenceB. R. Thomadsen, S. S. Kubsad, B. R. Paliwal, S. Shahabi, and T. R. Mackie, “ On the cause of the variation in tissue‐maximum ratio values with source‐to‐detector distance,” Med. Phys. 20 ( 3 ), 723 – 727 ( 1993 ). 10.1118/1.597022
dc.identifier.citedreferenceG. Krithivas and S. N. Rao, “ A study of the characteristics of radiation contaminants within a clinically useful photon beam,” Med. Phys. 12, 764 – 768 ( 1985 ). 10.1118/1.595661
dc.identifier.citedreferenceP. J. Biggs and M. D. Russell, “ An investigation in the presents of secondary electrons in megavoltage photon beams,” Phys. Med. Biol. 28, 1033 – 1043 ( 1983 ). 10.1088/0031‐9155/28/9/003
dc.identifier.citedreferenceC. C. Ling, M. C. Schell, and S. N. Rustgi, “ Magnetic analysis of the radiation components of a 10MV photon beam,” Med. Phys. 9, 20 – 26 ( 1982 ). 10.1118/1.595066
dc.identifier.citedreferenceP. J. Biggs and C. C. Ling, “ Electrons as the cause of the observed shift in dmax with field size in high energy photon beams,” Med. Phys. 6, 291 – 295 ( 1979 ). 10.1118/1.594580
dc.identifier.citedreferenceT. N. Padikal and J. A. Deye, “ Electron contamination of a high‐energy x‐ray beam,” Phys. Med. Biol. 23, 1086 – 1092 ( 1978 ). 10.1088/0031‐9155/23/6/004
dc.identifier.citedreferenceA. L. Medina, A. Teijeiro, J. Garcia, J. Esperon, J. A. Terron, D. P. Ruiz, and M. C. Carrion, “ Characterization of electron contamination in megavoltage photon beams,” Med. Phys. 32 ( 5 ), 1281 – 1292 ( 2005 ). 10.1118/1.1895793
dc.identifier.citedreferenceM. J. Butson, T. Cheung, P. Yu, and P. E. Metcalfe, “ Evaluation of a radiotherapy electron contamination defecting system,” Radiat. Meas. 32, 101 – 104 ( 2000 ). 10.1016/S1350‐4487(99)00267‐X
dc.identifier.citedreferenceM. J. Butson, P. K. N. Yu, and P. E. Metcalfe, “ Incident contamination lepton doses measured using radiochromic film in radiotherapy,” Radiat. Meas. 29, 605 – 609 ( 1998 ). 10.1016/S1350‐4487(98)00072‐9
dc.identifier.citedreferenceR. Sjogren and M. Karlsson, “ Electron contamination in high energy photon beams,” Med. Phys. 23 ( 11 ), 1873 – 1881 ( 1996 ). 10.1118/1.597750
dc.identifier.citedreferenceE. D. Yorke, C. C. Ling, and S. Rustgi, “ Air‐generated electron contamination of 4 and 10 MV photon beams: A comparison of theory and experiment,” Phys. Med. Biol. 30, 1305 – 1314 ( 1985 ). 10.1088/0031‐9155/30/12/004
dc.identifier.citedreferenceP. D. LaRiviere, “ Surface dose from 6 MV photon interactions in air,” Phys. Med. Biol. 28, 285 – 287 ( 1983 ). 10.1088/0031‐9155/28/3/009
dc.identifier.citedreferenceB. Nilsson and A. Brahme, “ Absorbed dose from secondary electrons in high energy photon beams,” Phys. Med. Biol. 24, 901 – 912 ( 1979 ). 10.1088/0031‐9155/24/5/003
dc.identifier.citedreferenceYu Chen, A. F. Bielajew, D. W. Litzenberg, J. M. Moran, and F. D. Becchetti, “ Magnetic confinement of electron and photon radiotherapy dose: A Monte Carlo simulation with a nonuniform longitudinal magnetic field,” Med. Phys. 32 ( 12 ), 3810 – 3818 ( 2005 ). 10.1118/1.2011091
dc.identifier.citedreferenceD. W. Litzenberg, B. A. Fraass, D. L. McShan, T. W. ODonnel, D. A. Roberts, F. D. Becchetti, A. F. Bielajew, and J. M. Moran, “ An apparatus for applying strong longitudinal magnetic fields to clinical photon and electron beams,” Phys. Med. Biol. 46, N105 – N115 ( 2001 ). 10.1088/0031‐9155/46/5/401
dc.identifier.citedreferenceT. C. F. van Heijst, M. D. den Hartogh, J. J. W. Lagendijk, H. J. G. Desire van den Bongard, and B. van Asselen, “ MR‐guided breast radiotherapy: Feasibility and magnetic‐field impact on skin dose,” Phys. Med. Biol. 58 ( 17 ), 5917 – 5930 ( 2013 ). 10.1088/0031‐9155/58/17/5917
dc.identifier.citedreferenceA. Keyvanloo, B. Burke, B. Warkentin, T. Tadic, S. Rathee, C. Kirkby, D. M. Santos, and B. G. Fallone, “ Skin dose in longitudinal and transverse linac‐MRIs using Monte Carlo and realistic 3D MRI models,” Med. Phys. 39 ( 10 ), 6509 – 6521 ( 2012 ). 10.1118/1.4754657
dc.identifier.citedreferenceB. M. Oborn, P. E. Metcalfe, M. J. Butson, A. B. Rosenfeld, and P. J. Keall, “ Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field,” Med. Phys. 39 ( 2 ), 874 – 889 ( 2012 ). 10.1118/1.3676181
dc.identifier.citedreferenceB. M. Oborn, P. E. Metcalfe, M. J. Butson, and A. B. Rosenfeld, “ Monte Carlo characterization of skin doses in 6 MV transverse field MRI‐linac systems: Effect of field size, surface orientation, magnetic field strength, and exit bolus,” Med. Phys. 37 ( 10 ), 5208 – 5217 ( 2010 ). 10.1118/1.3488980
dc.identifier.citedreferenceB. M. Oborn, P. E. Metcalfe, M. J. Butson, and A. B. Rosenfeld, “ High resolution entry and exit Monte Carlo dose calculations from a linear accelerator 6 MV beam under influence of transverse magnetic fields,” Med. Phys. 36 ( 8 ), 3549 – 3559 ( 2009 ). 10.1118/1.3157203
dc.identifier.citedreferenceVarian Medical Systems, Palo Alto, CA.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.