Show simple item record

Characterization of Structural and Electronic Transitions During Reduction and Oxidation of Ru(acac)3 Flow Battery Electrolytes by using X‐ray Absorption Spectroscopy

dc.contributor.authorKucharyson, Jonathan F.
dc.contributor.authorGaudet, Jason R.
dc.contributor.authorWyvratt, Brian M.
dc.contributor.authorThompson, Levi T.
dc.date.accessioned2017-01-06T20:46:13Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11
dc.identifier.citationKucharyson, Jonathan F.; Gaudet, Jason R.; Wyvratt, Brian M.; Thompson, Levi T. (2016). "Characterization of Structural and Electronic Transitions During Reduction and Oxidation of Ru(acac)3 Flow Battery Electrolytes by using X‐ray Absorption Spectroscopy." ChemElectroChem 3(11): 1875-1883.
dc.identifier.issn2196-0216
dc.identifier.issn2196-0216
dc.identifier.urihttps://hdl.handle.net/2027.42/134821
dc.description.abstractMetal acetylacetonates possess several very attractive electrochemical properties; however, their cyclabilities fall short of targets for use in nonaqueous redox flow batteries. This paper describes structural and compositional changes during the reduction and oxidation of ruthenium(III) acetylacetonate [Ru(acac)3], a representative acetylacetonate. Voltammetry, bulk electrolysis, and in situ X‐ray absorption spectroscopy (XAS) results are complemented by those from density functional theory (DFT) calculations. The reduction of Ru(acac)3 in acetonitrile is highly reversible, producing a couple at −1.1 V versus Ag/Ag+. In situ XAS and DFT indicate the formation of [Ru(acac)3]− with Ru−O bonds lengthened relative to Ru(acac)3, nearly all of the charge localized on Ru, and no ligand shedding. The oxidation of Ru(acac)3 is quasireversible, with a couple at 0.7 V. The initial product is likely [Ru(acac)3]+; however, this species is short‐lived, converting to a product with a couple at −0.2 V, a structure that is nearly identical to that of Ru(acac)3 within 3 Å of Ru, and approximately 70 % of the charge extracted from Ru (balance from acetylacetone). This non‐innocence likely contributes to the instability of [Ru(acac)3]+. Taken together, the results suggest that the stabilities and cyclabilities of acetylacetonates are determined by the degree of charge transfer to/from the metal.Track changes: The structural and electronic changes of Ru(acac)3 during oxidation and reduction are characterized using bulk electrolysis and in situ X‐ray absorption spectroscopy. Reduction is found to be reversible with minimal structural changes, and the electrons being stored entirely on the ruthenium. Oxidation results in a rapid side reaction as a result of electrons extracted from the ligand.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherruthenium acetylacetonate
dc.subject.otherenergy storage
dc.subject.otheracetylacetonates
dc.subject.otherX-ray absorption spectroscopy
dc.subject.otherredox flow batteries
dc.titleCharacterization of Structural and Electronic Transitions During Reduction and Oxidation of Ru(acac)3 Flow Battery Electrolytes by using X‐ray Absorption Spectroscopy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134821/1/celc201600360-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134821/2/celc201600360_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134821/3/celc201600360.pdf
dc.identifier.doi10.1002/celc.201600360
dc.identifier.sourceChemElectroChem
dc.identifier.citedreferenceX. Wei, L. Cosimbescu, W. Xu, J. Z. Hu, M. Vijayakumar, J. Feng, M. Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, W. Wang, Adv. Energy Mater. 2015, 5, 1400678.
dc.identifier.citedreferenceA. A. Shinkle, A. E. S. Sleightholme, L. D. Griffith, L. T. Thompson, C. W. Monroe, J. Power Sources 2012, 206, 490.
dc.identifier.citedreferenceQ. Liu, A. A. Shinkle, Y. Li, C. W. Monroe, L. T. Thompson, A. E. S. Sleightholme, Electrochem. Commun. 2010, 12, 1634.
dc.identifier.citedreferenceA. A. Shinkle, A. E. S. Sleightholme, L. T. Thompson, C. W. Monroe, J. Appl. Electrochem. 2011, 41, 1191.
dc.identifier.citedreferenceQ. Liu, A. E. S. Sleightholme, A. A. Shinkle, Y. Li, L. T. Thompson, Electrochem. commun. 2009, 11, 2312.
dc.identifier.citedreferenceA. A. Shinkle, T. J. Pomaville, A. E. S. Sleightholme, L. T. Thompson, C. W. Monroe, J. Power Sources 2014, 248, 1299.
dc.identifier.citedreferenceJ. A. Suttil, J. F. Kucharyson, I. L. Escalante-Garcia, P. J. Cabrera, B. R. James, P. R. F. Savinell, M. S. Sanford, L. Thompson, J. Mater. Chem. A 2015, 3, 7929.
dc.identifier.citedreferenceB. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Nature 2014, 505, 195.
dc.identifier.citedreferenceJ. Huang, L. Su, J. a. Kowalski, J. L. Barton, M. Ferrandon, A. K. Burrell, F. R. Brushett, L. Zhang, J. Mater. Chem. A 2015, 3, 14971.
dc.identifier.citedreferenceG. Nagarjuna, J. Hui, K. J. Cheng, T. Lichtenstein, M. Shen, J. S. Moore, J. Rodriguez-Lopez, J. Am. Chem. Soc. 2014, 136, 16309.
dc.identifier.citedreferenceM. H. Chakrabarti, R. A. W. Dryfe, E. P. L. Roberts, Electrochim. Acta 2007, 52, 2189.
dc.identifier.citedreferenceC. a. Apblett, D. M. Stewart, R. T. Fryer, J. C. Sell, H. D. I. Pratt, T. M. Anderson, R. W. Meulenberg, Electrochim. Acta 2015, 185, 156.
dc.identifier.citedreferenceGaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, 2009.
dc.identifier.citedreferenceN. M. O’Boyle, A. L. Tenderholt, K. M. Langner, J. Comput. Chem. 2008, 29, 839.
dc.identifier.citedreferenceM. A. Nawi, T. L. Riechel, Inorg. Chem. 1981, 20, 1974.
dc.identifier.citedreferenceH. Ikeuchi, K. Naganuma, M. Ichikawa, H. Ozawa, T. Ino, M. Sato, H. Yonezawa, S. Mukaida, A. Yamamoto, T. Hashimoto, J. Solution Chem. 2007, 36, 1243.
dc.identifier.citedreferenceS. Kar, N. Chanda, S. M. Mobin, A. Datta, F. A. Urbanos, V. G. Puranik, R. Jimenez-aparicio, G. K. Lahiri, Inorg. Chem. 2004, 43, 4911.
dc.identifier.citedreferenceZ. Zhang, S. S. Zhang, Rechargeable Batteries: Materials, Technologies and New Trends, Springer International Publishing, Switzerland, 2015.
dc.identifier.citedreferenceK. Getty, M. U. Delgado-Jaime, P. Kennepohl, Inorg. Chim. Acta 2008, 361, 1059.
dc.identifier.citedreferenceL. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput, K. Persson, L. A. Curtiss, J. Phys. Chem. Lett. 2015, 6, 283.
dc.identifier.citedreferenceN. Shao, X. Sun, S. Dai, D. Jiang, J. Phys. Chem. B 2011, 115, 12120.
dc.identifier.citedreferenceR. Freitag, Computational, Structural and Electrochemical Properties of Metal(III)tris-betadiketonato Complexes, University of the Free State, Dissertation, 2013.
dc.identifier.citedreferenceD. Kalinina, C. Dares, H. Kaluarachchi, P. G. Potvin, A. B. P. Lever, Inorg. Chem. 2008, 47, 10110.
dc.identifier.citedreferenceJ. Mun, M.-J. Lee, J.-W. Park, D.-J. Oh, D.-Y. Lee, S.-G. Doo, Electrochem. Solid-State Lett. 2012, 15, A 80.
dc.identifier.citedreferenceW. Wang, W. Xu, L. Cosimbescu, D. Choi, L. Li, Z. Yang, Chem. Commun. 2012, 48, 6669.
dc.identifier.citedreferenceX. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, Adv. Mater. 2014, 26, 7649.
dc.identifier.citedreferenceA. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick, Q. Liu, J. Appl. Electrochem. 2011, 41, 1137.
dc.identifier.citedreferenceP. Denholm, E. Ela, B. Kirby, M. Milligan, Contract 2010, NREL, 1.
dc.identifier.citedreferenceL. Jörrissen, H. Frey, Encycl. Electrochem. Power Sources 2009, 215.
dc.identifier.citedreferenceU. S. Department of Energy, Grid Energy Storage, 2013, 33.
dc.identifier.citedreferenceW. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater. 2013, 23, 970.
dc.identifier.citedreferenceA. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, John Wiley & Sons, Inc., New York, NY, 2001.
dc.identifier.citedreferenceR. M. Darling, K. G. Gallagher, F. R. Brushett, Energy Environ. Sci. 2014, 7, 3459.
dc.identifier.citedreferenceP. J. Cappillino, H. D. Pratt, N. S. Hudak, N. C. Tomson, T. M. Anderson, M. R. Anstey, Adv. Energy Mater. 2014, 4, 1300566.
dc.identifier.citedreferenceY. Huang, S. Gu, Y. Yan, S. F. Y. Li, Curr. Opin. Chem. Eng. 2015, 8, 105.
dc.identifier.citedreferenceP. J. Cabrera, X. Yang, J. A. Suttil, K. L. Hawthorne, R. E. M. Brooner, M. S. Sanford, L. T. Thompson, J. Phys. Chem. C 2015, 119, 15882.
dc.identifier.citedreferenceS.-H. Shin, S.-H. Yun, S.-H. Moon, RSC Adv. 2013, 3, 9095.
dc.identifier.citedreferenceD. Zhang, H. Lan, Y. Li, J. Power Sources 2012, 217, 199.
dc.identifier.citedreferenceH. D. Pratt, N. S. Hudak, X. Fang, T. M. Anderson, J. Power Sources 2013, 236, 259.
dc.identifier.citedreferenceY. Matsuda, K. Tanaka, M. Okada, Y. Takasu, M. Morita, T. Matsumura-Inoue, J. Appl. Electrochem. 1988, 18, 909.
dc.identifier.citedreferenceT. Yamamura, Y. Shiokawa, H. Yamana, H. Moriyama, Electrochim. Acta 2002, 48, 43.
dc.identifier.citedreferenceL. Cosimbescu, X. Wei, M. Vijayakumar, W. Xu, M. L. Helm, S. D. Burton, C. M. Sorensen, J. Liu, V. Sprenkle, W. Wang, Sci. Rep. 2015, 5, 14117.
dc.identifier.citedreferenceI. L. Escalante-Garcia, J. S. Wainright, L. T. Thompson, R. F. Savinell, J. Electrochem. Soc. 2014, 162, A 363.
dc.identifier.citedreferenceT. Herr, P. Fischer, J. Tübke, K. Pinkwart, P. Elsner, J. Power Sources 2014, 265, 317.
dc.identifier.citedreferenceT. Herr, J. Noack, P. Fischer, J. Tübke, Electrochim. Acta 2013, 113, 127.
dc.identifier.citedreferenceA. E. S. Sleightholme, A. A. Shinkle, Q. Liu, Y. Li, C. W. Monroe, L. T. Thompson, J. Power Sources 2011, 196, 5742.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.