Show simple item record

Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flatâ panel imagers (AMFPIs) for diagnostic radiology

dc.contributor.authorSiewerdsen, J. H.
dc.contributor.authorAntonuk, L. E.
dc.contributor.authorEl‐mohri, Y.
dc.contributor.authorYorkston, J.
dc.contributor.authorHuang, W.
dc.contributor.authorBoudry, J. M.
dc.contributor.authorCunningham, I. A.
dc.date.accessioned2017-01-06T20:46:46Z
dc.date.available2017-01-06T20:46:46Z
dc.date.issued1997-01
dc.identifier.citationSiewerdsen, J. H.; Antonuk, L. E.; El‐mohri, Y. ; Yorkston, J.; Huang, W.; Boudry, J. M.; Cunningham, I. A. (1997). "Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flatâ panel imagers (AMFPIs) for diagnostic radiology." Medical Physics 24(1): 71-89.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134855
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMedical image noise
dc.subject.otherMammography
dc.subject.otherRadiography
dc.subject.otherFluoroscopy
dc.subject.otherXâ ray detectors
dc.subject.otherXâ ray imaging
dc.subject.otherPhosphors
dc.subject.otherMedical imaging
dc.subject.otherNonâ ionizing radiation equipment and techniques
dc.subject.otherRadiography
dc.subject.otherFluoroscopy
dc.subject.otherMammography
dc.subject.otherdiagnostic radiography
dc.subject.othernoise
dc.subject.otherbiomedical equipment
dc.subject.other87.56.06
dc.subject.other87.56.01.g
dc.subject.other87.56.02
dc.subject.otherMedical Xâ ray imaging
dc.subject.otherXâ ray optics
dc.titleEmpirical and theoretical investigation of the noise performance of indirect detection, active matrix flatâ panel imagers (AMFPIs) for diagnostic radiology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
dc.contributor.affiliationotherThe University of Western Ontario, London, Ontario N6A 5K8, Canada
dc.contributor.affiliationotherImaging Research Laboratories, The John P. Robarts Research Institute and Department of Diagnostic Radiology, London Health Sciences Centreâ Victoria
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134855/1/mp7919.pdf
dc.identifier.doi10.1118/1.597919
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceL. E. Antonuk, J. H. Siewerdsen, J. Yorkston, and W. Huang, â Radiation response of amorphous silicon imaging arrays at diagnostic energies,â IEEE Trans. Nucl. Sci. IETNAE --> 14, 1500 â 1505 ( 1994 ).
dc.identifier.citedreferenceJ. Yorkston, L. E. Antonuk, N. Seraji, W. Huang, J. Siewerdsen, and Y. Elâ Mohri, â Evaluation of the MTF for a â Si:H imaging arrays,â Proc. SPIE PSISDG --> 2163, 141 â 148 ( 1994 ).
dc.identifier.citedreferenceJ. Yorkston, L. E. Antonuk, N. Seraji, W. Huang, J. Siewerdsen, and Y. Elâ Mohri, â MTF measurements with high resolution a â Si:H imaging arrays,â Proc. SPIE PSISDG --> 2432, 260 â 269 ( 1995 ).
dc.identifier.citedreferenceM. L. Giger, K. Doi, and C. E. Metz, â Investigation of basic imaging properties in digital radiography. Noise Wiener spectrum,â Med. Phys. MPHYA6 --> 11, 797 â 805 ( 1984 ).
dc.identifier.citedreferenceJ. M. Boudry, â Evaluation of hydrogenated amorphous silicon photodiodes and fieldâ effect transistors for use as elements of twoâ dimensional xâ ray imaging arrays,â Ph. D. thesis, University of Michigan, 1996.
dc.identifier.citedreferenceJ. M. Boudry and L. E. Antonuk, â Currentâ noiseâ powerâ spectra for amorphous silicon photodiode sensors,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 297, 975 â 980 ( 1993 ).
dc.identifier.citedreferenceJ. M. Boudry and L. E. Antonuk, â Currentâ noiseâ powerâ spectra for amorphous silicon thinâ film transistors,â J. Appl. Phys. JAPIAU --> 76, 2529 â 2534 ( 1994 ).
dc.identifier.citedreferenceR. G. Brown, Introduction to Random Signal Analysis and Kalman Filtering (Wiley, New York, 1983), Chap. 3.
dc.identifier.citedreferenceL. E. Antonuk, J. Yorkston, W. Huang, J. Siewerdsen, and R. A. Street, â Considerations for high frame rate operation of twoâ dimensional a â Si:H imaging arrays,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 297, 945 â 950 ( 1993 ).
dc.identifier.citedreferenceL. E. Antonuk, J. M. Boudry, Y. Elâ Mohri, W. Huang, J. H. Siewerdsen, J. Yorkston, and R. A. Street, â Large area, flatâ panel amorphous silicon imagers,â Proc. SPIE PSISDG --> 2432, 216 â 227 ( 1995 ).
dc.identifier.citedreferenceC. D. Motchenbacher and F. C. Fitchen, Lowâ Noise Electronic Design (Wiley, New York, 1973).
dc.identifier.citedreferenceB. A. Widrow, â A study of rough amplitude quantization by means of nyquist sampling theory,â Proc. IRE Trans. Circuit Theory PGCTâ 3, 266â 276 (1956).
dc.identifier.citedreferenceG. T. Barnes, â Noise analysis of radiographic imaging,â in Recent Developments in Digital Imaging, edited by K. Doi, L. Lanzl, and P. P. Lin (AIP, New York, 1985), pp. 16â 38.
dc.identifier.citedreferenceR. W. Ramirez, The FFT Fundamentals and Concepts (Prenticeâ Hall, Englewood Cliffs, NJ, 1991).
dc.identifier.citedreferenceJ. Yorkston, L. E. Antonuk, W. Huang, and R. A. Street, â Photoresponse linearity of a â Si:H imaging pixels,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 297, 951 â 956 ( 1993 ).
dc.identifier.citedreferenceG. Murphy, W. Bitler, J. Coffin, and R. Langdon, â Lag vs. noise in fluoroscopic imaging,â Proc. SPIE PSISDG --> 1896, 174 â 179 ( 1993 ).
dc.identifier.citedreferenceY. Matsunaga, F. Hatori, T. Hiroyuki, and O. Yoshida, â Analysis of signal to noise ratio of photoconductive layered solidâ state imaging device,â IEEE Trans. Electron Devices IETDAI --> 42, 38 â 42 ( 1995 ).
dc.identifier.citedreferenceR. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, New York, 1991).
dc.identifier.citedreferenceP. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGrawâ Hill, New York, 1992).
dc.identifier.citedreferenceR. Birch, M. Marshall, and G. M. Ardran, â Catalogue of spectral data for diagnostic xâ rays,â Hospital Physicists’ Association, Scientific Report Series 30 (1979).
dc.identifier.citedreferenceE. Storm and H. I. Israel, â Photon cross sections from 1 keV to 100 MeV for elements Z = 1 to Z = 100,, â Nucl. Data, Sect. A NDSAAI --> A7, 565 â 681 ( 1970 ).
dc.identifier.citedreferenceM. J. Flynn, S. M. Hames, and J. J. Ciarelli, â The effect of direct xâ ray interaction in the photodetector on image noise for a CCD/scintillator system,â Proc. SPIE PSISDG --> 2708, 116 â 127 ( 1996 ).
dc.identifier.citedreferenceT. S. Curry III, J. E. Dowdey, and R. C. Murry, Christensen’s Physics of Diagnostic Radiology (Lea & Febiger, Philadelphia, 1990).
dc.identifier.citedreferenceC. E. Metz, R. F. Wagner, K. Doi, D. G. Brown, R. M. Nishikawa, and K. J. Myers, â Toward consensus on quantitative assessment of medical imaging systems,â Med. Phys. MPHYA6 --> 22, 1057 â 1061 ( 1995 ).
dc.identifier.citedreferenceT. R. Fewell and R. E. Shuping, â Handbook of mammographic xâ ray spectra,â U.S. Department of Health, Education, and Welfare (1978).
dc.identifier.citedreferenceF. G. Rueter, B. J. Conway, J. L. McCrohan, and O. H. Suleiman, â Average radiation exposure values for three diagnostic radiographic examinations,â Radiology RADLAX --> 177, 341 â 345 ( 1990 ).
dc.identifier.citedreferenceJ. M. Boone, D. E. Pfeiffer, K. J. Strauss, R. P. Rossi, P. P. Lin, J. S. Shepard, and B. J. Conway, â A survey of fluoroscopic exposure rates: AAPM task group No. 11 report,â Med. Phys. MPHYA6 --> 20, 789 â 794 ( 1993 ).
dc.identifier.citedreferenceR. M. Gagne, C. N. West, R. F. Wagner, and P. W. Quinn, â Laboratory measurements of sensitometry, MTF, veiling glare, Wiener spectrum and DQE for image intensifier tubes,â Proc. SPIE PSISDG --> 1896, 248 â 258 ( 1993 ).
dc.identifier.citedreferenceH. Wieczorek, G. Frings, P. Quadflieg, and U. Schiebel, â CsI:Tl for solid state xâ ray detectors,â Proceedings of the International Conference on Inorganic Scintillators and their Applications, Delft, Netherlands (1995).
dc.identifier.citedreferenceP. C. Bunch, K. E. Huff, and R. Van Metter, â Analysis of the detective quantum efficiency of a radiographic screenâ film combination,â J. Opt. Soc. Am. A JOAOD6 --> 4, 902 â 909 ( 1987 ).
dc.identifier.citedreferenceR. Shaw, â Quantifying the efficiency of imaging systems: A decade of progress in optimizing screenâ films for xâ ray detection,â Proc. SPIE PSISDG --> 2432, 2 â 11 ( 1995 ).
dc.identifier.citedreferenceJ. T. Dobbins, D. L. Ergun, L. Rutz, D. A. Hinshaw, H. Blume, and D. C. Clark, â DQE ( f â ) of four generations of computed radiography acquisition devices,â Med. Phys. MPHYA6 --> 22, 1581 â 1593 ( 1995 ).
dc.identifier.citedreferenceP. M. de Groot, â Image intensifier design and specifications,â in Medical Physics Monograph No. 20, edited by J. A. Seibert, G. T. Barnes, and R. G. Gould, 429â 460 (1994).
dc.identifier.citedreferenceR. M. Nishikawa and M. J. Yaffe, â Signalâ toâ noise properties of mammographic filmâ screen systems,â Med. Phys. MPHYA6 --> 12, 32 â 39 ( 1985 ).
dc.identifier.citedreferenceH. Roehrig, L. L. Fajardo, T. Yu, and W. S. Schempp, â Signal, noise and detective quantum efficiency in CCD based xâ ray imaging systems for use in mammography,â Proc. SPIE PSISDG --> 2163, 320 â 332 ( 1994 ).
dc.identifier.citedreferenceR. A. Street, X. D. Wu, R. Weisfield, S. Ready, R. Apte, M. Nguyen, and P. Nylen, â Two dimensional amorphous silicon image sensor arrays,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 377, 757 â 766 ( 1995 ).
dc.identifier.citedreferenceL. E. Antonuk, J. Boudry, J. Yorkston, E. J. Morton, and W. Huang, â Development of thinâ film, flatâ panel arrays for diagnostic and radiotherapy imaging,â Proc. SPIE PSISDG --> 1651, 94 â 105 ( 1992 ).
dc.identifier.citedreferenceC. Van Berkel, N. C. Bird, C. J. Curling, and I. D. French, â 2D image sensor arrays with nip diodes,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 297, 939 â 944 ( 1993 ).
dc.identifier.citedreferenceH. Mimura, K. Sai, Y. Ohta, K. Yamamoto, and K. Kitamura, â A twoâ dimensional image sensor with a â Si:H pin diodes,â Appl. Surf. Sci. ASUSEE --> 48/49, 521 â 525 ( 1996 ).
dc.identifier.citedreferenceT. Graeve, W. Huang, S. M. Alexander, and Y. Li, â Amorphous silicon image sensor for xâ ray applications,â Proc. SPIE PSISDG --> 2415, 177 â 181 ( 1995 ).
dc.identifier.citedreferenceM. Yamaguchi, Y. Kaneko, and K. Tsutsui, â Twoâ dimensional contactâ type image sensor using amorphous silicon photoâ transistor,â Jpn. J. Appl. Phys., Part 1 JAPNDE --> 32, 458 â 461 ( 1993 ).
dc.identifier.citedreferenceD. L. Lee, L. K. Cheung, and L. S. Jeromin, â A new digital detector for projection radiography,â Proc. SPIE PSISDG --> 2432, 237 â 249 ( 1995 ).
dc.identifier.citedreferenceU. W. Schiebel, N. Conrads, N. Jung, M. Weibrecht, H. Wieczorek, T. T. Zaengel, M. J. Powell, I. D. French, and C. Glasse, â Fluoroscopic xâ ray imaging with amorphous silicon thinâ film arrays,â Proc. SPIE PSISDG --> 2163, 129 â 140 ( 1994 ).
dc.identifier.citedreferenceJ. Chabbal, C. Chaussat, T. Ducourant, L. Fritsch, J. Michailos, V. Spinnler, G. Vieux, M. Arques, G. Hahm, M. Hoheizel, H. Horbachek, R. Schulz, and M. Spahn, â Amorphous silicon xâ ray image sensor,â Proc. SPIE PSISDG --> 2708, 499 â 510 ( 1996 ).
dc.identifier.citedreferenceS. Ross, I. Naday, M. Kanyo, M. L. Westbrook, E. M. Westbrook, W. C. Phillips, M. J. Stanton, and R. A. Street, â Amorphous silicon area detectors for protein crystallography,â Proc. SPIE PSISDG --> 2415, 189 â 203 ( 1995 ).
dc.identifier.citedreferenceW. Zhao and J. A. Rowlands, â Xâ ray imaging using amorphous selenium: Feasibility of a flat panel selfâ scanned detector digital radiology,â Med. Phys. MPHYA6 --> 22, 1595 â 1604 ( 1995 ).
dc.identifier.citedreferenceL. E. Antonuk, Y. Elâ Mohri, J. H. Siewerdsen, J. Yorkston, W. Huang, and V. E. Scarpine, â Empirical investigation of the signal performance of a highâ resolution, indirect detection, active matrix flat panel imager (AMFPI) for diagnostic radiology,â Med. Phys. MPHYA6 --> 24, 51 â 70 ( 1997 ).
dc.identifier.citedreferenceJ. P. Bissonette, I. A. Cunningham, D. A. Jaffray, A. Fenster, and P. Munro, â A quantum accounting and detective quantum efficiency analysis for videoâ based portal imaging,â Med. Phys. (submitted).
dc.identifier.citedreferenceG. Spekowius, H. Boerner, W. Eckenbach, P. Quadflieg, and G. J. Laurenssen, â Simulation of the imaging performance of xâ ray image intensifier/TV camera chains,â Proc. SPIE PSISDG --> 2432, 12 â 23 ( 1995 ).
dc.identifier.citedreferenceH. H. Barrett and W. S. Swindell, Radiological Imaging: The Theory of Image Formation, Detection and Processing (Academic, New York, 1981).
dc.identifier.citedreferenceM. Rabbani, R. Shaw, and R. Van Metter, â Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms,â J. Opt. Soc. Am. A JOAOD6 --> 4, 895 â 901 ( 1987 ).
dc.identifier.citedreferenceJ. C. Dainty and R. Shaw, Image Science: Principles, Analysis and Evaluation of Photograhicâ type Imaging Processes (Academic, London, 1974).
dc.identifier.citedreferenceI. A. Cunningham, M. S. Westmore, and A. Fenster, â A spatialâ frequency dependent quantum accounting diagram and detective quantum efficiency model of signal and noise propagation in cascaded imaging systems,â Med. Phys. MPHYA6 --> 21, 417 â 427 ( 1994 ).
dc.identifier.citedreferenceI. A. Cunningham, M. S. Westmore, and A. Fenster, â Unification of image blur and noise using a stochastic convolution operator,â Med. Phys. (to be published).
dc.identifier.citedreferenceR. K. Swank, â Absorption and noise in xâ ray phosphors,â J. Appl. Phys. JAPIAU --> 44, 4199 â 4203 ( 1973 ).
dc.identifier.citedreferenceR. N. Bracewell, The Fourier Transform and its Applications (McGrawâ Hill, New York, 1986).
dc.identifier.citedreferenceI. A. Cunningham, M. S. Westmore, and A. Fenster, â Visual impact of the nonâ zero spatial frequency quantum sink,â Proc. SPIE PSISDG --> 2163, 274 â 283 ( 1994 ).
dc.identifier.citedreferenceM. S. Westmore and I. A. Cunningham, â Analysis of the detective quantum efficiency of coupling a CCD to a scintillating phosphor for xâ ray microtomographic imaging,â Proc. SPIE PSISDG --> 1896, 82 â 92 ( 1993 ).
dc.identifier.citedreferenceA. D. A. Maidment and M. J. Yaffe, â Analysis of the spatialâ frequencyâ dependent DQE of optically coupled digital mammography detectors,â Med. Phys. MPHYA6 --> 21, 721 â 729 ( 1994 ).
dc.identifier.citedreferenceJ. H. Siewerdsen, L. E. Antonuk, and J. Yorkston, â Theoretical performance of amorphous silicon imagers in diagnostic radiology,â Proc. SPIE PSISDG --> 2708, 484 â 493 ( 1996 ).
dc.identifier.citedreferenceH. E. Johns and J. R. Cunningham, The Physics of Radiology (Thomas, Springfield, 1983).
dc.identifier.citedreferenceD. P. Trauernicht and R. Van Metter, â The measurement of conversion noise in xâ ray intensifying screens,â Proc. SPIE PSISDG --> 914, 100 â 116 ( 1988 ).
dc.identifier.citedreferenceD. P. Trauernicht and R. Van Metter, â Conversion noise measurement for front and back xâ ray intensifying screens,â Proc. SPIE PSISDG --> 1231, 262 â 270 ( 1990 ).
dc.identifier.citedreferenceJ. A. Rowlands and K. W. Taylor, â Absorption and noise in cesium iodide xâ ray image intensifiers,â Med. Phys. MPHYA6 --> 10, 786 â 795 ( 1983 ).
dc.identifier.citedreferenceW. Hillen, W. Eckenbach, P. Quadflieg, and P. Zaengel, â Signalâ toâ noise performance in cesium iodide xâ ray fluorescent screens,â Proc. SPIE PSISDG --> 1443, 120 â 131 ( 1991 ).
dc.identifier.citedreferenceA. Ginzburg and C. E. Dick, â Image information transfer properties of xâ ray intensifying screens in the energy range from 17 to 320 keV,â Med. Phys. MPHYA6 --> 20, 1013 â 1021 ( 1993 ).
dc.identifier.citedreferenceR. M. Nishikawa, M. J. Yaffe, and R. B. Holmes, â Effect of finite phosphor thickness on detective quantum efficiency,â Med. Phys. MPHYA6 --> 16, 773 â 780 ( 1989 ).
dc.identifier.citedreferenceL. E. Antonuk, J. Yorkston, W. Huang, J. Boudry, and E. J. Morton, â Radiation response characteristics of amorphous silicon arrays for megavoltage radiotherapy imaging,â IEEE Trans. Nucl. Sci. IETNAE --> 39, 1069 â 1073 ( 1992 ).
dc.identifier.citedreferenceL. E. Antonuk, J. Yorkston, W. Huang, J. Boudry, E. J. Morton, M. J. Longo, and R. A. Street, â Factors affecting image quality for megavoltage and diagnostic xâ ray a â Si:H imaging arrays,â Mater. Res. Soc. Symp. Proc. MRSPDH --> 258, 1069 â 1074 ( 1992 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.