Show simple item record

Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology

dc.contributor.authorLayfield, Lester J.
dc.contributor.authorRoy‐chowdhuri, Sinchita
dc.contributor.authorBaloch, Zubair
dc.contributor.authorEhya, Hormoz
dc.contributor.authorGeisinger, Kim
dc.contributor.authorHsiao, Susan J.
dc.contributor.authorLin, Oscar
dc.contributor.authorLindeman, Neal I.
dc.contributor.authorRoh, Michael
dc.contributor.authorSchmitt, Fernando
dc.contributor.authorSidiropoulos, Nikoletta
dc.contributor.authorVanderLaan, Paul A.
dc.date.accessioned2017-01-06T20:46:54Z
dc.date.available2018-01-08T19:47:53Zen
dc.date.issued2016-12
dc.identifier.citationLayfield, Lester J.; Roy‐chowdhuri, Sinchita ; Baloch, Zubair; Ehya, Hormoz; Geisinger, Kim; Hsiao, Susan J.; Lin, Oscar; Lindeman, Neal I.; Roh, Michael; Schmitt, Fernando; Sidiropoulos, Nikoletta; VanderLaan, Paul A. (2016). "Utilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology." Diagnostic Cytopathology 44(12): 1000-1009.
dc.identifier.issn8755-1039
dc.identifier.issn1097-0339
dc.identifier.urihttps://hdl.handle.net/2027.42/134863
dc.publisherWiley Periodicals, Inc.
dc.publisherInternational Agency for Research on Cancer
dc.subject.otherimmunocytochemistry
dc.subject.otherflow cytometry
dc.subject.othermolecular diagnostics
dc.subject.othernextâ generation sequencing
dc.subject.othercytology
dc.titleUtilization of ancillary studies in the cytologic diagnosis of respiratory lesions: The papanicolaou society of cytopathology consensus recommendations for respiratory cytology
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134863/1/dc23549.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134863/2/dc23549_am.pdf
dc.identifier.doi10.1002/dc.23549
dc.identifier.sourceDiagnostic Cytopathology
dc.identifier.citedreferenceStigt JA, ’tHart NA, Knol AJ, Uil SM, Groen HJ. Pyrosequencing analysis of EGFR and KRAS mutations in EUS and EBUSâ derived cytologic samples of adenocarcinomas of the lung. J Thorac Oncol 2013; 8: 1012 â 1028.
dc.identifier.citedreferenceShiau CJ, Babwah JP, da Cunha Santos G, et al. Sample features associated with success rates in populationâ based EGFR mutation testing. J Thorac Oncol 2014; 9: 947 â 956.
dc.identifier.citedreferenceLozano MD, Zulueta JJ, Echeveste JI, et al. Assessment of epidermal growth factor receptor and Kâ ras mutation status in cytological stained smears of nonâ small cell lung cancer patients: Correlation with clinical outcomes. Oncologist 2011; 16: 877 â 885.
dc.identifier.citedreferencePang B, Dettmer M, Ong CW, et al. The positive impact of cytological specimens for EGFR mutation testing in nonâ small cell lung cancer: A single South East Asian laboratory’s analysis of 670 cases. Cytopathology 2012; 23: 229 â 236.
dc.identifier.citedreferenceLindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: Guideline from the College of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol 2013; 8: 823 â 859.
dc.identifier.citedreferenceVanderLaan PA. Molecular markers: Implications for cytopathology and specimen collection. Cancer Cytopathol 2015; 123: 454 â 460.
dc.identifier.citedreferenceSholl LM. Biomarkers in lung adenocarcinoma: A decade of progress. Arch Pathol Lab Med 2015; 139: 469 â 480.
dc.identifier.citedreferenceKim HS, Mitsudomi T, Soo RA, Cho BC. Personalized therapy on the horizon for squamous cell carcinoma of the lung. Lung Cancer 2013; 80: 249 â 55. Jun;
dc.identifier.citedreferenceJackman DM, Miller VA, Cioffredi LA, et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated nonâ small cell lung cancer patients: Results of an online tumor registry of clinical trials. Clin Cancer Res 2009; 15: 5267 â 5273.
dc.identifier.citedreferenceBirchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA 1987; 84: 9270 â 9274.
dc.identifier.citedreferenceAcquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta 2009; 1795: 37 â 52.
dc.identifier.citedreferenceBergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012; 30: 863 â 870.
dc.identifier.citedreferenceKim HR, Lim SM, Kim HJ, et al. The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann Oncol 2013; 24: 2364 â 23670.
dc.identifier.citedreferenceShaw AT, Camidge DR, Engelman JA, et al. Clinical activity of crizotinib in advanced nonâ small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. 2012 ASCO Meeting. Ab J Clin Oncol 2012; 30: 7508.
dc.identifier.citedreferenceYoung G, Wang K, He J, et al. Clinical nextâ generation sequencing successfully applied to fineâ needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol 2013; 121: 688 â 694. doi: 10.1002/cncy.21338.
dc.identifier.citedreferenceScarpa A, Sikora K, Fassan M, et al. Molecular typing of lung adenocarcinoma on cytological samples using a multigene next generation sequencing panel. PloS One 2013; 8: e80478. doi: 10.1371/journal.pone.0080478.
dc.identifier.citedreferenceKanagalâ Shamanna R, Portier BP, Singh RR, et al. Nextâ generation sequencingâ based multiâ gene mutation profiling of solid tumors using fine needle aspiration samples: Promises and challenges for routine clinical diagnostics. Mod Pathol 2014; 27: 314 â 327. doi: 10.1038/modpathol.2013.122.
dc.identifier.citedreferenceRoyâ Chowdhuri S, Goswami RS, Chen H, et al. Factors affecting the success of nextâ generation sequencing in cytology specimens. Cancer Cytopathol 2015; 123: 659 â 668. doi: 10.1002/cncy.21597.
dc.identifier.citedreferenceKarnes HE, Duncavage EJ, Bernadt CT. Targeted nextâ generation sequencing using fineâ needle aspirates from adenocarcinomas of the lung. Cancer Cytopathol 2014; 122: 104 â 113. doi: 10.1002/cncy.21361.
dc.identifier.citedreferenceButtitta F, Felicioni L, Del Grammastro M, et al. Effective assessment of egfr mutation status in bronchoalveolar lavage and pleural fluids by nextâ generation sequencing. Clin Cancer Res Off J Am Assoc Cancer Res 2013; 19: 691 â 698. doi: 10.1158/1078-0432.CCR-12-1958.
dc.identifier.citedreferenceWei S, Lieberman D, Morrisette JJ, et al. Using â residualâ FNA rinse and body fluid specimens for nextâ generation sequencing: An institutional experience. Cancer Cytopathol 2016; 124: 324 â 329.
dc.identifier.citedreferenceGailey MP, Stence AA, Jensen CS, Ma D. Multiplatform comparison of molecular oncology tests performed on cytology specimens and formalinâ fixed, paraffinâ embedded tissue. Cancer Cytopathol 2015; 123: 30 â 39. doi: 10.1002/cncy.21476.
dc.identifier.citedreferenceChen H, Luthra R, Goswami RS, Singh RR, Royâ Chowdhuri S. Analysis of preâ analytic factors affecting the success of clinical nextâ generation sequencing of solid organ malignancies. Cancers 2015; 7: 1699 â 1715. doi: 10.3390/cancers7030859.
dc.identifier.citedreferenceMonaco SE. Cytopathology of lung cancer: Moving from morphology to molecular. Diagn Histopathol 2012; 18: 313 â 320.
dc.identifier.citedreferenceRoh MH. The utilization of cytologic fineâ needle aspirates of lung cancer for molecular diagnostic testing. J Pathol Transl Med 2015; 49: 300 â 309. doi: 10.4132/jptm.2015.06.16 (2015).
dc.identifier.citedreferenceDumur CI, Kraft AO. Nextâ generation sequencing and the cytopathologist. Cancer Cytopathol 2015; 123: 69 â 70. doi: 10.1002/cncy.21515.
dc.identifier.citedreferenceVigliar E, Malapelle U, de Luca C, Bellevicine C, Troncone G. Challenges and opportunities of nextâ generation sequencing: A cytopathologist’s perspective. Cytopathol Off J Br Soc Clin Cytol 2015; 26: 271 â 283. doi: 10.1111/cyt.12265.
dc.identifier.citedreferenceBellevicine C, Malapelle U, de Luca C, Iaccarino A, Troncone G. EGFR analysis: Current evidence and future directions. Diagn Cytopathol 2014; 42: 984 â 992. doi: 10.1002/dc.23142.
dc.identifier.citedreferenceTripathy D, Harnden K, Blackwell K, Robson M. Next generation sequencing and tumor mutation profiling: Are we ready for routine use in the oncology clinic? BMC Med 2014; 12: 140. doi: 10.1186/s12916-014-0140-3.
dc.identifier.citedreferenceRedig AJ, Janne PA. Basket trials and the evolution of clinical trial design in an era of genomic medicine. J Clin Oncol Off J Am Soc Clin Oncol 2015; 33: 975 â 977. doi: 10.1200/JCO.2014.59.8433.
dc.identifier.citedreferenceLayfield LJ, Glasgow BJ, DuPuis MH. Fineâ needle aspiration of lymphadenopathy of suspected infectious etiology. Arch Pathol Lab Med 1985; 109: 810 â 812.
dc.identifier.citedreferenceShetuni B, Lakey M, Kulesza P. Optimal specimen processing of fine needle aspirates of nonâ Hodgkin lymphoma. Diagn Cytopathol 2012; 40: 984 â 986.
dc.identifier.citedreferenceRekhtman N, Brandt SM, Sigel CS, et al. Suitability of thoracic cytology for new therapeutic paradigms in nonâ small cell lung carcinoma: High accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 2011; 6: 451 â 458.
dc.identifier.citedreferenceNavani N, Brown JM, Nankivell M, et al. Suitability of endobronchial ultrasoundâ guided transbronchial needle aspiration specimens for subtyping and genotyping of nonâ small cell lung cancer. A multicenter study of 774 patients. Am J Respir Crit Care Med 2012; 185: 1316 â 1322.
dc.identifier.citedreferenceBetz BL, Dixon CA, Weigelin HC, Knoepp SM, Roh MH. The use of stained cytologic direct smears for ALK gene rearrangement analysis of lung adenocarcinoma. Cancer Cytopathol 2013; 121: 489 â 499.
dc.identifier.citedreferenceHarada S, Agostoâ Arroyo E, Levesque JA, et al. Poor cell block adequacy rate for molecular testing improved with the addition of Diffâ Quikâ stained smears: Need for better cell block processing. Cancer Cytopathol 2015; 123: 480 â 487.
dc.identifier.citedreferencevan der Heijden EH, Casal RF, Trisolini R, et al. World association for bronchology and interventional pulmonology, task force on specimen guidelines. Guideline for the acquisition and preparation of conventional and endobronchial ultrasoundâ guided transbronchial needle aspiration specimens for the diagnosis and molecular testing of patients with known or suspected lung cancer. Respiration 2014; 88: 500 â 517.
dc.identifier.citedreferenceKossakowski CA, Morresiâ Hauf A, Schnabel PA, Eberhardt R, Herth FJ, Warth A. Preparation of cell blocks for lung cancer diagnosis and prediction: Protocol and experience of a highâ volume center. Respiration 2014; 87: 432 â 438.
dc.identifier.citedreferenceSauter JL, Grogg KL, Vrana JA, Law ME, Halvorson JL, Henry MR. Young investigator challenge: Validation and optimization of immunohistochemistry protocols for use on cellient cell block specimens. Cancer Cytopathol 2016; 124: 89 â 100.
dc.identifier.citedreferenceTravis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung cancer in small biopsies and cytology: Implications of the 2011 international association for the study of lung cancer/American thoracic society/European respiratory society classification. Arch Pathol Lab Med 2013; 137: 668 â 684.
dc.identifier.citedreferenceBeasley MB, Brambilla E, Chiraeac LR, et al. Carcinoid tumor. In: Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG, editors. WHO classification of tumours of the lung, pleura, thymus and heart. 4th ed. Lyon: International Agency for Research on Cancer; 2015. p 73 â 77.
dc.identifier.citedreferenceHasegawa T, Yamao K, Hijioka S, et al. Evaluation of Kiâ 67 index in EUSâ FNA specimens for the assessment of malignancy risk in pancreatic neuroendocrine tumors. Endoscopy 2014; 46: 32 â 38.
dc.identifier.citedreferenceLarghi A, Capurso G, Carnuccio A, et al. Kiâ 67 grading of nonfunctioning pancreatic neuroendocrine tumors on histologic samples obtained by EUSâ guided fineâ needle tissue acquisition: A prospective study. Gastrointest Endosc 2012; 76: 570 â 577.
dc.identifier.citedreferenceRekhtman N, Ang DC, Sima CS, Travis WD, Moreira AL. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of wholeâ tissue sections with validation in small specimens. Mod Pathol 2011; 24: 1348 â 1359.
dc.identifier.citedreferenceYatabe Y, Mitsudomi T, Takahashi T. TTFâ 1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 2002; 26: 767 â 773.
dc.identifier.citedreferenceLau SK, Luthringer DJ, Eisen RN. Thyroid transcription factorâ 1: A review. Appl Immunohistochem Mol Morphol 2002; 10: 97 â 102.
dc.identifier.citedreferenceUeno T, Linder S, Elmberger G. Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer 2003; 88: 1229 â 1233.
dc.identifier.citedreferenceNicholson AG, Gonzalez D, Shah P, et al. Refining the diagnosis and EGFR status of nonâ small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTFâ 1, cytokeratin 5/6, and P63, and EGFR mutation analysis. J Thorac Oncol 2010; 5: 436 â 441.
dc.identifier.citedreferenceCamilo R, Capelozzi VL, Siqueira SA, Del Carlo Bernardi F. Expression of p63, keratin 5/6, keratin 7, and surfactantâ A in nonâ small cell lung carcinomas. Hum Pathol 2006; 37: 542 â 546.
dc.identifier.citedreferenceChuman Y, Bergman A, Ueno T, et al. Napsin A, a member of the aspartic protease family, is abundantly expressed in normal lung and kidney tissue and is expressed in lung adenocarcinomas. FEBS Lett 1999; 462: 129 â 134.
dc.identifier.citedreferenceBishop JA, Teruyaâ Feldstein J, Westra WH, Pelosi G, Travis WD, Rekhtman N. p40 (Î Np63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol 2012; 25: 405 â 415.
dc.identifier.citedreferencePelosi G, Fabbri A, Bianchi F, et al. Î Np63 (p40) and thyroid transcription factorâ 1 immunoreactivity on small biopsies or cellblocks for typing nonâ small cell lung cancer: A novel twoâ hit, sparingâ material approach. J Thorac Oncol 2012; 7: 281 â 90.
dc.identifier.citedreferenceNonaka D. A study of Î Np63 expression in lung nonâ small cell carcinomas. Am J Surg Pathol 2012; 36: 895 â 899.
dc.identifier.citedreferenceKlempner SJ, Cohen DW, Costa DB. ALK translocation in nonâ small cell lung cancer with adenocarcinoma and squamous cell carcinoma markers. J Thorac Oncol 2011; 6: 1439 â 1440.
dc.identifier.citedreferenceFabbro D, Di Loreto C, Beltrami CA, Belfiore A, Di Lauro R, Damante G. Expression of thyroidâ specific transcription factors TTFâ 1 and PAXâ 8 in human thyroid neoplasms. Cancer Res 1994; 54: 4744 â 4749.
dc.identifier.citedreferenceChoi SM, Furth EE, Zhang PJ. Unexpected TTFâ 1 positivity in a subset of gastric adenocarcinomas. Appl Immunohistochem Mol Morphol 2015.
dc.identifier.citedreferenceZacharaâ Szczakowski S, Verdun T, Churg A. Accuracy of classifying poorly differentiated nonâ small cell lung carcinoma biopsies with commonly used lung carcinoma markers. Hum Pathol 2015; 46: 776 â 782.
dc.identifier.citedreferenceMiskovic J, Brekalo Z, Vukojevic K, et al. Coâ expression of TTFâ 1 and neuroendocrine markers in the human fetal lung and pulmonary neuroendocrine tumors. Acta Histochem 2015; 117: 451 â 459.
dc.identifier.citedreferenceTran L, Mattsson JS, Nodin B, et al. Various antibody clones of napsin A, thyroid transcription factor 1, and p40 and comparisons with cytokeratin 5 and p63 in histopathologic diagnostics of nonâ small cell lung carcinoma. Appl Immunohistochem Mol Morphol 2015.
dc.identifier.citedreferenceKandalaft PL, Gown AM, Isacson C. The lungâ restricted marker napsin A is highly expressed in clear cell carcinomas of the ovary. Am J Clin Pathol 2014; 142: 830 â 836.
dc.identifier.citedreferenceGurda GT, Zhang L, Wang Y, et al. Utility of five commonly used immunohistochemical markers TTFâ 1, Napsin A, CK7, CK5/6 and P63 in primary and metastatic adenocarcinoma and squamous cell carcinoma of the lung: A retrospective study of 246 fine needle aspiration cases. Clin Transl Med 2015; 4: 16.
dc.identifier.citedreferenceTatsumori T, Tsuta K, Masai K, et al. p40 is the best marker for diagnosing pulmonary squamous cell carcinoma: Comparison with p63, cytokeratin 5/6, desmocollinâ 3, and sox2. Appl Immunohistochem Mol Morphol 2014; 22: 377 â 382.
dc.identifier.citedreferenceVogt AP, Cohen C, Siddiqui MT. p40 (Î Np63) is more specific than p63 and cytokeratin 5 in identifying squamous cell carcinoma of bronchopulmonary origin: A review and comparative analysis. Diagn Cytopathol 2014; 42: 453 â 458.
dc.identifier.citedreferenceElâ Maqsoud NM, Tawfiek ER, Abdelmeged A, Rahman MF, Moustafa AA. The diagnostic utility of the triple markers Napsin A, TTFâ 1, and PAX8 in differentiating between primary and metastatic lung carcinomas. Tumour Biol 2015. [Epub ahead of print]
dc.identifier.citedreferenceCollins BT, Wang JF, Bernadt CT. Utilization of p40 (Î Np63) with p63 and cytokeratin 5/6 immunohistochemistry in nonâ small cell lung carcinoma fineâ needle aspiration biopsy. Acta Cytol 2013; 57: 619 â 624.
dc.identifier.citedreferenceKimbrell HZ, Gustafson KS, Huang M, Ehya H. Subclassification of nonâ small cell lung cancer by cytologic sampling: A logical approach with selective use of immunocytochemistry. Acta Cytol 2012; 56: 419 â 424.
dc.identifier.citedreferenceJohnson H, Cohen C, Fatima N, Duncan D, Siddiqui MT. Thyroid transcription factor 1 and Napsin A double stain: Utilizing different vendor antibodies for diagnosing lung adenocarcinoma. Acta Cytol 2012; 56: 596 â 602.
dc.identifier.citedreferenceInamura K, Takeuchi K, Togashi Y, et al. EML4â ALK lung cancers are characterized by rare other mutations, a TTFâ 1 cell lineage, an acinar histology, and young onset. Mod Pathol 2009; 22: 508 â 515.
dc.identifier.citedreferenceJokoji R, Yamasaki T, Minami S, et al. Combination of morphological feature analysis and immunohistochemistry is useful for screening of EML4â ALKâ positive lung adenocarcinoma. J Clin Pathol 2010; 63: 1066 â 1070.
dc.identifier.citedreferenceWallander ML, Geiersbach KB, Tripp SR, Layfield LJ. Comparison of reverse transcriptionâ polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization methodologies for detection of echinoderm microtubuleâ associated proteinlike 4â anaplastic lymphoma kinase fusionâ positive nonâ small cell lung carcinoma: Implications for optimal clinical testing. Arch Pathol Lab Med 2012; 136: 796 â 803.
dc.identifier.citedreferenceKitamura A, Hosoda W, Sasaki E, Mitsudomi T, Yatabe Y. Immunohistochemical detection of EGFR mutation using mutationâ specific antibodies in lung cancer. Clin Cancer Res 2010; 16: 3349 â 3355.
dc.identifier.citedreferenceAtkins D, Reiffen KA, Tegtmeier CL, Winther H, Bonato MS, Störkel S. Immunohistochemical detection of EGFR in paraffinâ embedded tumor tissues: Variation in staining intensity due to choice of fixative and storage time of tissue sections. J Histochem Cytochem 2004; 52: 893 â 901.
dc.identifier.citedreferenceBrevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn 2010; 12: 169 â 176.
dc.identifier.citedreferenceSelinger CI, Rogers TM, Russell PA, et al. Testing for ALK rearrangement in lung adenocarcinoma: A multicenter comparison of immunohistochemistry and fluorescent in situ hybridization. Mod Pathol 2013; 26: 1545 â 1553.
dc.identifier.citedreferenceSholl LM, Weremowicz S, Gray SW, et al. Combined use of ALK immunohistochemistry and FISH for optimal detection of ALKâ rearranged lung adenocarcinomas. J Thorac Oncol 2013; 8: 322 â 328.
dc.identifier.citedreferenceRikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007; 131: 1190 â 1203.
dc.identifier.citedreferenceStumpfova M, Jänne PA. Zeroing in on ROS1 rearrangements in nonâ small cell lung cancer. Clin Cancer Res 2012; 18: 4222 â 4224.
dc.identifier.citedreferenceOmori S, Kenmotsu H, Abe M, et al. Changes in PDâ L1 expression in nonâ small cell lung cancer by immunohistochemical analysis. J Clin Oncol 2015;33 e22118.
dc.identifier.citedreferencePardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252 â 264.
dc.identifier.citedreferenceJi M, Liu Y, Li Q, et al. PDâ 1/PDâ L1 pathway in nonâ smallâ cell lung cancer and its relation with EGFR mutation. J Transl Med 2015; 13: 5.
dc.identifier.citedreferenceGaron EB, Rizvi NA, Hui R, et al. KEYNOTEâ 001 Investigators. Pembrolizumab for the treatment of nonâ smallâ cell lung cancer. N Engl J Med 2015; 372: 2018 â 2028.
dc.identifier.citedreferenceTopalian SL, Drake CG, Pardoll DM. Targeting the PDâ 1/B7â H1(PDâ L1) pathway to activate antiâ tumor immunity. Curr Opin Immunol 2012; 24: 207 â 212.
dc.identifier.citedreferenceLandi L, Minuti G, D’Incecco A, Cappuzzo F. Targeting câ MET in the battle against advanced nonsmallâ cell lung cancer. Curr Opin Oncol 2013; 25: 130 â 136.
dc.identifier.citedreferenceSierra JR, Tsao MS. câ MET as a potential therapeutic target and biomarker in cancer. Ther Adv Med Oncol 2011; 3: S21 â S 35.
dc.identifier.citedreferenceOzasa H, Oguri T, Maeno K, et al. Significance of câ MET overexpression in cytotoxic anticancer drugâ resistant smallâ cell lung cancer cells. Cancer Sci 2014; 105: 1032 â 1039.
dc.identifier.citedreferenceKorpanty GJ, Graham DM, Vincent MD, Leighl NB. Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROSâ 1, and KRAS. Front Oncol 2014; 4: 204.
dc.identifier.citedreferenceSuh J, Rekhtman N, Ladanyi M, Riely GJ, Travis WD. Testing of new IASLC/ATS/ERS criteria for diagnosis of lung adenocarcinoma (AD) in small biopsies: Minimize immunohistochemistry (IHC) to maximize tissue for molecular studies. Mod Pathol 2011; 24: 424A.
dc.identifier.citedreferenceTravis WD, Rekhtman N. Pathological diagnosis and classification of lung cancer in small biopsies and cytology: Strategic management of tissue for molecular testing. Semin Respir Crit Care Med 2011; 32: 22 â 31.
dc.identifier.citedreferenceSavic S, Tapia C, Grilli B, et al. Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of nonâ smallâ cell lung cancers. Br J Cancer 2008; 98: 154 â 160.
dc.identifier.citedreferenceOtani H, Toyooka S, Soh J, et al. Detection of EGFR gene mutations using the wash fluid of CTâ guided biopsy needle in NSCLC patients. J Thorac Oncol 2008; 3: 472 â 476.
dc.identifier.citedreferenceRafael OC, Aziz M, Raftopoulos H, Vele OE, Xu W, Sugrue C. Molecular testing in lung cancer: Fineâ needle aspiration specimen adequacy and test prioritization prior to the CAP/IASLC/AMP molecular testing guideline publication. Cancer Cytopathol 2014; 122: 454 â 458.
dc.identifier.citedreferencePusztaszeri M, Soccal PM, Mach N, Pache JC, Mc Kee T. Cytopathological diagnosis of nonâ small cell lung cancer: Recent advances including rapid onâ site evaluation, novel endoscopic techniques and molecular tests. J Pulmonar Respirat Med 2011; S5: 002.
dc.identifier.citedreferenceKnoepp SM, Roh MH. Ancillary techniques on directâ smear aspirate slides: A significant evolution for cytopathology techniques. Cancer Cytopathol 2013; 121: 120 â 128.
dc.identifier.citedreferenceda Cunha Santos G, Saieg MA. Preanalytic parameters in epidermal growth factor receptor mutation testing for nonâ small cell lung carcinoma: A review of cytologic series. Cancer Cytopathol 2015; 123: 633 â 643.
dc.identifier.citedreferenceda Cunha Santos G, Saieg MA, Geddie W, Leighl N. EGFR gene status in cytological samples of nonsmall cell lung carcinoma: Controversies and opportunities. Cancer Cytopathol 2011; 119: 80 â 91.
dc.identifier.citedreferenceBillah S, Stewart J, Staerkel G, Chen S, Gong Y, Guo M. EGFR and KRAS mutations in lung carcinoma: Molecular testing by using cytology specimens. Cancer Cytopathol 2011; 119: 111 â 117.
dc.identifier.citedreferenceMalapelle U, Bellevicine C, De Luca C, et al. EGFR mutations detected on cytology samples by a centralized laboratory reliably predict response to gefitinib in nonâ small cell lung carcinoma patients. Cancer Cytopathol 2013; 121: 552 â 560.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.