Show simple item record

Sustained lobe reconnection in Saturn’s magnetotail

dc.contributor.authorThomsen, M. F.
dc.contributor.authorJackman, C. M.
dc.contributor.authorMitchell, D. G.
dc.contributor.authorHospodarsky, G.
dc.contributor.authorKurth, W. S.
dc.contributor.authorHansen, K. C.
dc.date.accessioned2017-01-06T20:47:02Z
dc.date.available2017-01-06T20:47:02Z
dc.date.issued2015-12
dc.identifier.citationThomsen, M. F.; Jackman, C. M.; Mitchell, D. G.; Hospodarsky, G.; Kurth, W. S.; Hansen, K. C. (2015). "Sustained lobe reconnection in Saturn’s magnetotail." Journal of Geophysical Research: Space Physics 120(12): 10,257-10,274.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134869
dc.description.abstractThe degree to which solar wind driving may affect Saturn’s magnetosphere is not yet fully understood. We present observations that suggest that under some conditions the solar wind does govern the character of the plasma sheet in Saturn’s outer magnetosphere. On 16 September 2006, the Cassini spacecraft, at a radial distance of 37 Rs near local midnight, observed a sunward flowing ion population for ~5 h, which was accompanied by enhanced Saturn Kilometric Radiation emissions. We interpret this beam as the outflow from a long‐lasting episode of Dungey‐type reconnection, i.e., reconnection of previously open flux containing magnetosheath material. The beam occurred in the middle of a several‐day interval of SKR activity and enhanced lobe magnetic field strength, apparently caused by the arrival of a solar wind compression region with significantly higher than average dynamic pressure. The arrival of the high‐pressure solar wind also marked a change in the composition of the plasma‐sheet plasma, from water‐group‐dominated material clearly of inner‐magnetosphere origin to material dominated by light‐ion composition, consistent with captured magnetosheath plasma. This event suggests that under the influence of prolonged high solar wind dynamic pressure, the tail plasma sheet, which normally consists of inner‐magnetospheric plasma, is eroded away by ongoing reconnection that then involves open lobe field lines. This process removes open magnetic flux from the lobes and creates a more Earth‐like, Dungey‐style outer plasma sheet dominantly of solar wind origin. This behavior is potentially a recurrent phenomenon driven by repeating high‐pressure streams (corotating interaction regions) in the solar wind, which also drive geomagnetic storms at Earth.Key PointsEvidence for long‐lasting Dungey‐type magnetotail reconnection at Saturn is presentedThis event is associated with arrival of a solar wind stream‐driven compression regionCreation of a more Earth‐like outer plasma sheet may be a recurrent stream‐driven phenomenon
dc.publisherJohn Wiley
dc.subject.othermagnetotail
dc.subject.othermagnetosphere
dc.subject.otherSaturn
dc.titleSustained lobe reconnection in Saturn’s magnetotail
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134869/1/jgra52237.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134869/2/jgra52237_am.pdf
dc.identifier.doi10.1002/2015JA021768
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMitchell, D. G., et al. ( 2005 ), Energetic ion acceleration in Saturn’s magnetotail: Substorms at Saturn?, Geophys. Res. Lett., 32, L20S01, doi: 10.1029/2005GL022647.
dc.identifier.citedreferenceMa, X., B. Stauffer, P. A. Delamere, and A. Otto ( 2015 ), Asymmetric Kelvin‐Helmholtz propagation at Saturn’s dayside magnetopause, J. Geophys. Res. Space Physics, 120, 1867 – 1875, doi: 10.1002/2014JA020746.
dc.identifier.citedreferenceMasters, A., M. F. Thomsen, S. V. Badman, C. S. Arridge, D. T. Young, A. J. Coates, and M. K. Dougherty ( 2011 ), Supercorotating return flow from reconnection in Saturn’s magnetotail, Geophys. Res. Lett., 38, L03103, doi: 10.1029/2010GL046149.
dc.identifier.citedreferenceMasters, A., J. P. Eastwood, M. Swisdak, M. F. Thomsen, C. T. Russell, N. Sergis, F. J. Crary, M. K. Dougherty, A. J. Coates, and S. M. Krimigis ( 2012 ), The importance of plasma β conditions for magnetic reconnection at Saturn’s magnetopause, Geophys. Res. Lett., 39, L08103, doi: 10.1029/2012GL051372.
dc.identifier.citedreferenceMasters, A., M. Fujimoto, H. Hasegawa, C. T. Russell, A. J. Coates, and M. K. Dougherty ( 2014 ), Can magnetopause reconnection drive Saturn’s magnetosphere?, Geophys. Res. Lett., 41, 1862 – 1868, doi: 10.1002/2014GL059288.
dc.identifier.citedreferenceMcAndrews, H. J., C. J. Owen, M. F. Thomsen, B. Lavraud, A. J. Coates, M. K. Dougherty, and D. T. Young ( 2008 ), Evidence for reconnection at Saturn’s magnetopause, J. Geophys. Res., 113, A04210, doi: 10.1029/2007JA012581.
dc.identifier.citedreferenceMcAndrews, H. J., et al. ( 2009 ), Plasma in Saturn’s nightside magnetosphere and implications for global circulation, Planet. Space Sci., 57, 1714 – 1722.
dc.identifier.citedreferenceMitchell, D. G., et al. ( 2015 ), Injection, interchange, and reconnection: Energetic particle observations in Saturn’s magnetosphere, in Magnetotails in the Solar System, AGU Geophys. Monogr., vol. 207, edited by A. Keiling, C. M. Jackman, and P. A. Delamere, pp. 327 – 344, John Wiley, Hoboken, N. J.
dc.identifier.citedreferenceRadioti, A., D. Grodent, J.‐C. Gérard, S. E. Milan, B. Bonfond, J. Gustin, and W. Pryor ( 2011 ), Bifurcations of the main auroral ring at Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause, J. Geophys. Res., 116, A11209, doi: 10.1029/2011JA016661.
dc.identifier.citedreferenceRichardson, I. G., S. W. H. Cowley, E. W. Hones Jr., and S. J. Bame ( 1987 ), Plasmoid‐associated energetic ion bursts in the deep geomagnetic tail: Properties of plasmoids and the post‐plasmoid plasma sheet, J. Geophys. Res., 92, 9997 – 10,013, doi: 10.1029/JA092iA09p09997.
dc.identifier.citedreferenceRussell, C. T., C. M. Jackman, H. Y. Wei, C. Bertucci, and M. K. Dougherty ( 2008 ), Titan’s influence on Saturnian substorm occurrence, Geophys. Res. Lett., 35, L15101, doi: 10.1029/2008GL034080.
dc.identifier.citedreferenceSergis, N., C. M. Jackman, A. Masters, S. M. Krimigis, M. F. Thomsen, D. C. Hamilton, D. G. Mitchell, M. K. Dougherty, and A. J. Coates ( 2013 ), Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma, J. Geophys. Res. Atmos., 118, 1620 – 1634, doi: 10.1002/jgra.50164.
dc.identifier.citedreferenceSzego, K., Z. Nemeth, G. Erdos, L. Foldy, M. Thomsen, and D. Delapp ( 2011 ), The plasma environment of Titan: The magnetodisk of Saturn near the encounters as derived from ion densities measured by the Cassini/CAPS plasma spectrometer, J. Geophys. Res., 116, A10219, doi: 10.1029/2011JA016629.
dc.identifier.citedreferenceSzego, K., Z. Nemeth, G. Erdos, L. Foldy, Z. Bebesi, M. Thomsen, and D. Delapp ( 2012 ), Location of the magnetodisk in the nightside outer magnetosphere of Saturn near equinox based on ion densities, J. Geophys. Res., 117, A09225, doi: 10.1029/2012JA017817.
dc.identifier.citedreferenceThomsen, M. F. ( 2013 ), Saturn’s magnetospheric dynamics, Geophys. Res. Lett., 40, 5337 – 5344, doi: 10.1002/2013GL057967.
dc.identifier.citedreferenceThomsen, M. F., et al. ( 2010 ), Survey of ion plasma parameters in Saturn’s magnetosphere, J. Geophys. Res., 115, A10220, doi: 10.1029/2010JA015267.
dc.identifier.citedreferenceThomsen, M. F., R. J. Wilson, R. L. Tokar, D. B. Reisenfeld, and C. M. Jackman ( 2013 ), Cassini/CAPS observations of duskside tail dynamics at Saturn, J. Geophys. Res. Space Physics, 118, 5767 – 5781, doi: 10.1002/jgra.50552.
dc.identifier.citedreferenceThomsen, M. F., et al. ( 2014 ), Ion composition in interchange injection events in Saturn’s magnetosphere, J. Geophys. Res. Space Physics, 119, 9761 – 9772, doi: 10.1002/2014JA020489.
dc.identifier.citedreferenceThomsen, M. F., D. G. Mitchell, X. Jia, C. M. Jackman, G. Hospodarsky, and A. J. Coates ( 2015 ), Plasmapause formation at Saturn, J. Geophys. Res. Space Physics, 120, 2571 – 2583, doi: 10.1002/2015JA021008.
dc.identifier.citedreferenceVasyliunas, V. M. ( 1983 ), Plasma distribution and flow, in Physics of the Jovian Magnetosphere, edited by A. J. Dessler, pp. 395 – 453, Cambridge Univ. Press, New York.
dc.identifier.citedreferenceWalker, R. J., K. Fukazawa, T. Ogino, and D. Morozoff ( 2011 ), A simulation study of Kelvin‐Helmholz waves at Saturn’s magnetopause, J. Geophys. Res., 116, A03203, doi: 10.1029/2010JA015905.
dc.identifier.citedreferenceYoung, D. T., et al. ( 2004 ), Cassini Plasma Spectrometer investigation, Space Sci. Rev., 114, 1 – 112.
dc.identifier.citedreferenceZieger, B., and K. C. Hansen ( 2008 ), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107, doi: 10.1029/2008JA013046.
dc.identifier.citedreferenceArridge, C. S., et al. ( 2015 ), Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail, Nat. Phys., doi: 10.1038/NPHYS3565, in press.
dc.identifier.citedreferenceBadman, S. V., and S. W. H. Cowley ( 2007 ), Significance of Dungey‐cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines, Ann. Geophys., 25, 941, doi: 10.5194/angeo-25-941-2007.
dc.identifier.citedreferenceBadman, S. V., E. J. Bunce, J. T. Clarke, S. W. H. Cowley, J.‐C. Gérard, D. Grodent, and S. E. Milan ( 2005 ), Open flux estimates in Saturn’s magnetosphere during the January 2004 Cassini‐HST campaign, and implications for reconnection rates, J. Geophys. Res., 110, A11216, doi: 10.1029/2005JA011240.
dc.identifier.citedreferenceBadman, S. V., A. Masters, H. Hasegawa, M. Fujimoto, A. Radioti, D. Grodent, N. Sergis, M. K. Dougherty, and A. J. Coates ( 2013 ), Bursty magnetic reconnection at Saturn’s magnetopause, Geophys. Res. Lett., 40, 1027 – 1031, doi: 10.1002/grl.50199.
dc.identifier.citedreferenceBadman, S. V., et al. ( 2014 ), Open flux in Saturn’s magnetosphere, Icarus, 231, 137, doi: 10.1016/j.icarus.2013.12.004.
dc.identifier.citedreferenceBelenkaya, E. S., S. W. H. Cowley, S. V. Badman, M. S. Blokhina, and V. V. Kalegaev ( 2008 ), Dependence of the open‐closed field line boundary in Saturn’s ionosphere on both the IMF and solar wind dynamic pressure: Comparison with the UV auroral oval observed by the HST, Ann. Geophys., 26, 159 – 166.
dc.identifier.citedreferenceBelenkaya, E. S., S. W. H. Cowley, J. D. Nichols, M. S. Blokhina, and V. V. Kalegaev ( 2011 ), Magnetospheric mapping of the dayside UV auroral oval at Saturn using simultaneous HST images, Cassini IMF data, and a global magnetic field model, Ann. Geophys., 29, 1233 – 1246.
dc.identifier.citedreferenceBunce, E. J., S. W. H. Cowley, D. M. Wright, A. J. Coates, M. K. Dougherty, N. Krupp, W. S. Kurth, and A. M. Rymer ( 2005 ), In situ observations of a solar wind compression‐induced hot plasma injection in Saturn’s tail, Geophys. Res. Lett., 32, L20S04, doi: 10.1029/2005GL022888.
dc.identifier.citedreferenceClarke, J. T., et al. ( 2005 ), Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter, Nature, 433, 717 – 719, doi: 10.1038/nature03331.
dc.identifier.citedreferenceCowley, S. W. H., S. V. Badman, E. J. Bunce, J. T. Clarke, J.‐C. Gérard, D. Grodent, C. M. Jackman, S. E. Milan, and T. K. Yeoman ( 2005 ), Reconnection in a rotation‐dominated magnetosphere and its relation to Saturn’s auroral dynamics, J. Geophys. Res., 110, A02201, doi: 10.1029/2004JA010796.
dc.identifier.citedreferenceCrary, F. J., et al. ( 2005 ), Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae, Nature, 433, 720 – 722, doi: 10.1038/nature/03333.
dc.identifier.citedreferenceDelamere, P. A., R. J. Wilson, S. Eriksson, and F. Bagenal ( 2013 ), Magnetic signatures of Kelvin‐Helmholtz vortices on Saturn’s magnetopause: Global survey, J. Geophys. Res. Space Physics, 118, 393 – 404, doi: 10.1029/2012JA018197.
dc.identifier.citedreferenceDelamere, P. A., A. Otto, X. Ma, F. Bagenal, and R. J. Wilson ( 2015 ), Magnetic flux circulation in the rotationally driven giant magnetospheres, J. Geophys. Res. Space Physics, 120, 4229 – 4245, doi: 10.1002/2015JA021036.
dc.identifier.citedreferenceDesch, M. D. ( 1982 ), Evidence for solar‐wind control of Saturn radio emission, J. Geophys. Res., 87, 4549 – 4554, doi: 10.1029/JA087iA06p04549.
dc.identifier.citedreferenceDesroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2013 ), Conditions at the magnetopause of Saturn and implications for the solar wind interaction, J. Geophys. Res. Space Physics, 118, 3087 – 3095, doi: 10.1002/jgra.50294.
dc.identifier.citedreferenceDougherty, M. K., et al. ( 2004 ), The Cassini magnetic field investigation, Space Sci. Rev., 114, 331 – 383.
dc.identifier.citedreferenceFuselier, S. A., R. Frahm, W. S. Lewis, A. Masters, J. Mukherjee, S. M. Petrinec, and I. J. Sillanpaa ( 2014 ), The location of magnetic reconnection at Saturn’s magnetopause: A comparison with Earth, J. Geophys. Res. Space Physics, 119, 2563 – 2578, doi: 10.1002/2013JA019684.
dc.identifier.citedreferenceGalopeau, P., P. Zarka, and D. Le Quéau ( 1989 ), Theoretical model of Saturn’s kilometric radiation spectrum, J. Geophys. Res., 94 ( A7 ), 8739 – 8755, doi: 10.1029/JA094iA07p08739.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2004 ), The Cassini radio and plasma wave investigation, Space Sci. Rev., 114, 395 – 463.
dc.identifier.citedreferenceHanlon, P. G., M. K. Dougherty, R. J. Forsyth, M. J. Owens, K. C. Hansen, G. Toth, F. J. Crary, and D. T. Young ( 2004 ), On the evolution of the solar wind between 1 and 5 AU at the time of the Cassini Jupiter flyby: Multispacecraft observations of interplanetary coronal mass ejections including the formation of a merged interaction region, J. Geophys. Res., 109, A09S03, doi: 10.1029/2003JA010112.
dc.identifier.citedreferenceHill, T. W., et al. ( 2008 ), Plasmoids in Saturn’s magnetotail, J. Geophys. Res., 113, A01214, doi: 10.1029/2007JA012626.
dc.identifier.citedreferenceHuddleston, D. E., C. T. Russell, G. Le, and A. Szabo ( 1997 ), Magnetopause structure and the role of reconnection at the outer planets, J. Geophys. Res., 102 ( A11 ), 24,289 – 24,302, doi: 10.1029/97JA02416.
dc.identifier.citedreferenceJackman, C. M., and C. S. Arridge ( 2011a ), Statistical properties of the magnetic field in the Kronian magnetotail lobes and current sheet, J. Geophys. Res., 116, A05224, doi: 10.1029/2010JA015973.
dc.identifier.citedreferenceJackman, C. M., and C. S. Arridge ( 2011b ), Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres, Solar Phys., 274, 481 – 502, doi: 10.1007/s11207-011-9748-z.
dc.identifier.citedreferenceJackman, C. M., N. Achilleos, E. J. Bunce, S. W. H. Cowley, M. K. Dougherty, G. H. Jones, S. E. Milan, and E. J. Smith ( 2004 ), Interplanetary magnetic field at ~9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics, J. Geophys. Res., 109, A11203, doi: 10.1029/2004JA010614.
dc.identifier.citedreferenceJackman, C. M., C. T. Russell, D. J. Southwood, C. S. Arridge, N. Achilleos, and M. K. Dougherty ( 2007 ), Strong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection, Geophys. Res. Lett., 34, L11203, doi: 10.1029/2007GL029764.
dc.identifier.citedreferenceJackman, C. M., L. Lamy, M. P. Freeman, P. Zarka, B. Cecconi, W. S. Kurth, S. W. H. Cowley, and M. K. Dougherty ( 2009 ), On the character and distribution of lower‐frequency radio emissions at Saturn and their relationship to substorm‐like events, J. Geophys. Res., 114, A08211, doi: 10.1029/2008JA013997.
dc.identifier.citedreferenceJackman, C. M., et al. ( 2010 ), In situ observations of the effect of a solar wind compression on Saturn’s magnetotail, J. Geophys. Res., 115, A10240, doi: 10.1029/2010JA015312.
dc.identifier.citedreferenceJackman, C. M., J. A. Slavin, and S. W. H. Cowley ( 2011 ), Cassini observations of plasmoid structure and dynamics: Implications for the role of magnetic reconnection in magnetospheric circulation at Saturn, J. Geophys. Res., 116, A10212, doi: 10.1029/2011JA016682.
dc.identifier.citedreferenceJackman, C. M., N. Achilleos, S. W. H. Cowley, E. J. Bunce, A. Radioti, D. Grodent, S. V. Badman, M. K. Dougherty, and W. Pryor ( 2013 ), Auroral counterpart of magnetic field dipolarizations in Saturn’s tail, Planet. Space Sci., 82–83, 34 – 42, doi: 10.1016/j.pss.2013.03.010.
dc.identifier.citedreferenceJackman, C. M., et al. ( 2014 ), Saturn’s dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics, J. Geophys. Res. Space Physics, 119, 5465 – 5494, doi: 10.1002/2013JA019388.
dc.identifier.citedreferenceJackman, C. M., et al. ( 2015 ), Field dipolarization in Saturn’s magnetotail with planetward ion flows and energetic particle flow bursts: Evidence of quasi‐steady reconnection, J. Geophys. Res. Space Physics, 120, 3603 – 3617, doi: 10.1002/2015JA020995.
dc.identifier.citedreferenceJasinski, J. M., et al. ( 2014 ), Cusp observation at Saturn’s high‐latitude magnetosphere by the Cassini spacecraft, Geophys. Res. Lett., 41, 1382 – 1388, doi: 10.1002/2014GL059319.
dc.identifier.citedreferenceJia, X., et al. ( 2012 ), Magnetospheric configuration and dynamics of Saturn’s magnetosphere: A global MHD simulation, J. Geophys. Res., 117, A05225, doi: 10.1029/2012JA017575.
dc.identifier.citedreferenceJinks, S. L., et al. ( 2014 ), Cassini multi‐instrument assessment of Saturn’s polar cap boundary, J. Geophys. Res. Space Physics, 119, 8161 – 8177, doi: 10.1002/2014JA020367.
dc.identifier.citedreferenceKrimigis, S. M., et al. ( 2004 ), Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan, Space Sci. Rev., 114, 233 – 329.
dc.identifier.citedreferenceKurth, W. S., et al. ( 2005 ), An Earth‐like correspondence between Saturn’s auroral features and radio emission, Nature, 433, 722, doi: 10.1038/nature03334.
dc.identifier.citedreferenceLai, H. R., H. Y. Wei, C. T. Russell, C. S. Arridge, and M. K. Dougherty ( 2012 ), Reconnection at the magnetopause of Saturn: Perspective from FTE occurrence and magnetosphere size, J. Geophys. Res., 117, A05222, doi: 10.1029/2011JA017263.
dc.identifier.citedreferenceLamy, L., P. Zarka, B. Cecconi, R. Prangé, W. S. Kurth, and D. A. Gurnett ( 2008 ), Saturn kilometric radiation: Average and statistical properties, J. Geophys. Res., 113, A07201, doi: 10.1029/2007JA012900.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.