Show simple item record

Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71

dc.contributor.authorGibbons, John P.
dc.contributor.authorAntolak, John A.
dc.contributor.authorFollowill, David S.
dc.contributor.authorHuq, M. Saiful
dc.contributor.authorKlein, Eric E.
dc.contributor.authorLam, Kwok L.
dc.contributor.authorPalta, Jatinder R.
dc.contributor.authorRoback, Donald M.
dc.contributor.authorReid, Mark
dc.contributor.authorKhan, Faiz M.
dc.date.accessioned2017-01-06T20:47:16Z
dc.date.available2017-01-06T20:47:16Z
dc.date.issued2014-03
dc.identifier.citationGibbons, John P.; Antolak, John A.; Followill, David S.; Huq, M. Saiful; Klein, Eric E.; Lam, Kwok L.; Palta, Jatinder R.; Roback, Donald M.; Reid, Mark; Khan, Faiz M. (2014). "Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71." Medical Physics 41(3): n/a-n/a.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134882
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherPhysicists
dc.subject.otherIntensity modulated radiation therapy
dc.subject.otherIonization chambers
dc.subject.otherElectron beams
dc.subject.otherMultileaf collimators
dc.subject.otherCollimation
dc.subject.otherwater
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherTherapeutic applications
dc.subject.otherElectron and positron beams
dc.subject.otherdosimetry
dc.subject.otherelectron beams
dc.subject.otherlaser beams
dc.subject.otherphantoms
dc.subject.otherprotocols
dc.subject.otherradiation therapy
dc.subject.othermonitor unit
dc.subject.otherdose calculation
dc.subject.otherphoton beams
dc.subject.otherelectron beams
dc.subject.otherRadiation therapy
dc.subject.otherScintigraphy
dc.subject.otherDosimetry
dc.subject.otherField size
dc.subject.otherCollimators
dc.subject.otherPhotons
dc.titleMonitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan,Ann Arbor, Michigan 48109
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of Pittsburgh CancerInstitute, Pittsburgh, Pennsylvania 15232
dc.contributor.affiliationotherDepartment of Physics, Mary Bird Perkins Cancer Center,Baton Rouge, Louisiana 70809
dc.contributor.affiliationotherDepartment of Radiation Oncology, Virginia CommonwealthUniversity, Richmond, Virginia 23298
dc.contributor.affiliationotherDepartment of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri 63110
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of Minnesota,Minneapolis, Minnesota 55455
dc.contributor.affiliationotherDepartment of Medical Physics, Fletcher‐Allen Health Care,Burlington, Vermont 05401
dc.contributor.affiliationotherDepartment of Radiation Oncology, Cancer Centers of NorthCarolina, Raleigh, North Carolina 27607
dc.contributor.affiliationotherDepartment of Radiation Physics, UT M.D. Anderson CancerCenter, Houston, Texas 77030
dc.contributor.affiliationotherDepartment of Radiation Oncology, Mayo Clinic, Rochester,Minnesota 55905
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134882/1/mp4244.pdf
dc.identifier.doi10.1118/1.4864244
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceU. Myler and J. J. Szabo, “ Dose calculation along the nonwedged direction for externally wedged beams: Iimprovement of dosimetric accuracy with comparatively moderate effort,” Med. Phys. 29, 748 – 754 ( 2002 ). 10.1118/1.1470501
dc.identifier.citedreferenceA. M. Kalend, A. Wu, V. Yoder, and A. Maitz, “ Separation of dose‐gradient effect from beam‐hardening effect on wedge factors in photon fields,” Med. Phys. 17, 701 – 704 ( 1990 ). 10.1118/1.596469
dc.identifier.citedreferenceE. C. McCullough, J. Gortney, and C. R. Blackwell, “ A depth dependence determination of the wedge transmission factor for 4–10 MV photon beams,” Med. Phys. 15, 621 – 623 ( 1988 ). 10.1118/1.596216
dc.identifier.citedreferenceJ. P. Gibbons, “ The effect of physical and dynamic wedges on effective source position,” Med. Phys. 22, 1545 ( 1995 ).
dc.identifier.citedreferenceS. Kim, C. Liu, C. Chen, and J. R. Palta, “ Two‐effective‐source method for the calculation of in‐air output at various source‐to‐detector distances in wedged fields,” Med. Phys. 26, 949 – 955 ( 1999 ). 10.1118/1.598487
dc.identifier.citedreferenceF. M. Khan, “ Dosimetry of wedged fields with asymmetric collimation,” Med. Phys. 20, 1447 – 1451 ( 1993 ). 10.1118/1.597108
dc.identifier.citedreferenceD. Georg, “ Monitor unit calculation on the beam axis of open and wedged asymmetric high‐energy photon beams,” Phys. Med. Biol. 44, 2987 – 3007 ( 1999 ). 10.1088/0031‐9155/44/12/310
dc.identifier.citedreferenceB. Smulders, I. A. Bruinvis, and B. J. Mijnheer, “ Monitor unit calculations for wedged asymmetric photon beams,” Phys. Med. Biol. 47, 2013 – 2030 ( 2002 ). 10.1088/0031‐9155/47/12/302
dc.identifier.citedreferenceD. N. Mihailidis, P. D. Tomara, and J. P. Gibbons, “ Measurements of primary off‐axis ratios in wedged asymmetric photon fields: A formalism for dose and monitor unit calculations,” Phys. Med. Biol. 50, 2003 – 2014 ( 2005 ). 10.1088/0031‐9155/50/9/006
dc.identifier.citedreferenceC. S. Chui and T. LoSasso, “ Beam profiles along the nonwedged direction for large wedged fields,” Med. Phys. 21, 1685 – 1690 ( 1994 ). 10.1118/1.597282
dc.identifier.citedreferenceP. Storchi and E. Woudstra, “ Calculation models for determining the absorbed dose in water phantoms in off‐axis planes of rectangular fields of open and wedged photon beams,” Phys. Med. Biol. 40, 511 – 527 ( 1995 ). 10.1088/0031‐9155/40/4/003
dc.identifier.citedreferenceC. Liu, Z. Li, and J. R. Palta, “ Characterizing output for the Varian enhanced dynamic wedge field,” Med. Phys. 25, 64 – 70 ( 1998 ). 10.1118/1.598161
dc.identifier.citedreferenceC. Liu, S. Kim, D. L. Kahler, and J. R. Palta, “ Generalized monitor unit calculation for the Varian enhanced dynamic wedge field,” Med. Phys. 30, 1891 – 1896 ( 2003 ). 10.1118/1.1586269
dc.identifier.citedreferenceS. Papatheodorou, S. Zefkili, and J. C. Rosenwald, “ The ‘equivalent wedgeˈ implementation of the Varian enhanced dynamic wedge (EDW) into a treatment planning system,” Phys. Med. Biol. 44, 509 – 524 ( 1999 ). 10.1088/0031‐9155/44/2/016
dc.identifier.citedreferenceE. E. Klein, R. Gerber, X. R. Zhu, F. Oehmke, and J. A. Purdy, “ Multiple machine implementation of enhanced dynamic wedge,” Int. J. Radiat., Oncol., Biol., Phys. 40, 977 – 985 ( 1998 ). 10.1016/S0360‐3016(97)00916‐4
dc.identifier.citedreferenceJ. P. Gibbons, “ Calculation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 25, 1411 – 1418 ( 1998 ). 10.1118/1.598313
dc.identifier.citedreferenceK. L. Prado, S. M. Kirsner, R. J. Kudchadker, R. E. Steadham, and R. G. Lane, “ Enhanced dynamic wedge factors at off‐axis points in asymmetric fields,” J. Appl. Clin. Med. Phys. 4, 75 – 84 ( 2003 ). 10.1120/1.1534710
dc.identifier.citedreferenceM. Miften, M. Wiesmeyer, A. Beavis, K. Takahashi, and S. Broad, “ Implementation of enhanced dynamic wedge in the focus rtp system,” Med. Dosim. 25, 81 – 86 ( 2000 ). 10.1016/S0958‐3947(00)00033‐9
dc.identifier.citedreferenceM. K. Yu, “ Analytical representation of enhanced dynamic wedge factors for symmetric and asymmetric photon fields,” Med. Phys. 29, 2606 – 2610 ( 2002 ). 10.1118/1.1513568
dc.identifier.citedreferenceV. Y. Kuperman, “ Analytical representation for Varian EDW factors at off‐center points,” Med. Phys. 32, 1256 – 1261 ( 2005 ). 10.1118/1.1872532
dc.identifier.citedreferenceW. Ansbacher and C. Neath, “ Comment on “Analytical representation of enhanced dynamic wedge factors for symmetric and asymmetric fields,” Med. Phys. 30, 722–723 (2003); 10.1118/1.1555491 W. Ansbacher and C. Neath, Med. Phys. 30, 724 – 725 ( 2003 ). 10.1118/1.1555494
dc.identifier.citedreferenceJ. M. Lydon and K. L. Rykers, “ Beam profiles in the nonwedged direction for dynamic wedges,” Phys. Med. Biol. 41, 1217 – 1225 ( 1996 ). 10.1088/0031‐9155/41/7/010
dc.identifier.citedreferenceG. E. Desobry, T. J. Waldron, and I. J. Das, “ Validation of a new virtual wedge model,” Med. Phys. 25, 71 – 72 ( 1998 ). 10.1118/1.598172
dc.identifier.citedreferenceJ. van Santvoort, “ Dosimetric evaluation of the Siemens virtual wedge,” Phys. Med. Biol. 43, 2651 – 2663 ( 1998 ). 10.1088/0031‐9155/43/9/016
dc.identifier.citedreferenceM. Miften, X. R. Zhu, K. Takahashi, F. Lopez, and M. T. Gillin, “ Implementation and verification of virtual wedge in a three‐dimensional radiotherapy planning system,” Med. Phys. 27, 1635 – 1643 ( 2000 ). 10.1118/1.599030
dc.identifier.citedreferenceA. L. McKenzie and P. H. Stevens, “ How is photon head scatter in a linear accelerator related to the concept of a virtual source?,” Phys. Med. Biol. 38, 1173 – 1180 ( 1993 ). 10.1088/0031‐9155/38/8/016
dc.identifier.citedreferenceJ. Van Dyk, J. M. Galvin, G. P. Glasgow, and E. B. Podgorsak, AAPM Report 17: The Physical Aspects of Total and Half Body Photon Irradiation, 1986.
dc.identifier.citedreferenceD. T. Burns, G. X. Ding, and D. W. Rogers, “ R50 as a beam quality specifier for selecting stopping‐power ratios and reference depths for electron dosimetry,” Med. Phys. 23, 383 – 388 ( 1996 ). 10.1118/1.597893
dc.identifier.citedreferenceF. M. Khan, W. Sewchand, and S. H. Levitt, “ Effect of air space and depth dose in electron beam therapy,” Radiology 126, 249 – 251 ( 1978 ). 10.1148/126.1.249
dc.identifier.citedreferenceB. R. Thomadsen, L. W. Asp, J. van de Geijn, B. R. Paliwal, and C. PoCheng, “ Perturbation of electron beam doses as a function of SSD due to the use of shielding blocks on the Clinac‐18a,” Med. Phys. 8, 507 – 509 ( 1981 ). 10.1118/1.594999
dc.identifier.citedreferenceE. R. Cecatti, J. F. Goncalves, S. G. Cecatti, and M. da Penha Silva, “ Effect of the accelerator design on the position of the effective electron source,” Med. Phys. 10, 683 – 686 ( 1983 ). 10.1118/1.595406
dc.identifier.citedreferenceS. C. Sharma and M. W. Johnson, “ Electron beam effective source surface distances for a high energy linear accelerator,” Med. Dosim. 16, 65 – 70 ( 1991 ).
dc.identifier.citedreferenceM. D. Mills, K. R. Hogstrom, and R. S. Fields, “ Determination of electron beam output factors for a 20‐MeV linear accelerator,” Med. Phys. 12, 473 – 476 ( 1985 ). 10.1118/1.595674
dc.identifier.citedreferenceA. Jamshidi, F. T. Kuchnir, and C. S. Reft, “ Determination of the source position for the electron beams from a high‐energy linear accelerator,” Med. Phys. 13, 942 – 948 ( 1986 ). 10.1118/1.595823
dc.identifier.citedreferenceK. R. Hogstrom, “ Clinical electron beam dosimetry: Basic dosimetry data,” in Advances in Radiation Oncology Physics–Proceedings of the Summer School of the AAPM, edited by J. A. Purdy ( American Institute of Physics, New York, 1991 ).
dc.identifier.citedreferenceB. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, “ American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25, 1773 – 1829 ( 1998 ). 10.1118/1.598373
dc.identifier.citedreferenceA. Boyer, L. Xing, C. M. Ma, B. Curran, R. Hill, A. Kania, and A. Bleier, “ Theoretical considerations of monitor unit calculations for intensity modulated beam treatment planning,” Med. Phys. 26, 187 – 195 ( 1999 ). 10.1118/1.598502
dc.identifier.citedreferenceC. M. Ma, T. Pawlicki, S. B. Jiang, J. S. Li, J. Deng, E. Mok, A. Kapur, L. Xing, L. Ma, and A. L. Boyer, “ Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system,” Phys. Med. Biol. 45, 2483 – 2495 ( 2000 ). 10.1088/0031‐9155/45/9/303
dc.identifier.citedreferenceJ. H. Kung, G. T. Chen, and F. K. Kuchnir, “ A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance,” Med. Phys. 27, 2226 – 2230 ( 2000 ). 10.1118/1.1286553
dc.identifier.citedreferenceL. Xing, Y. Chen, G. Luxton, J. G. Li, and A. L. Boyer, “ Monitor unit calculation for an intensity modulated photon field by a simple scatter‐summation algorithm,” Phys. Med. Biol. 45, N1 – N7 ( 2000 ). 10.1088/0031‐9155/45/3/401
dc.identifier.citedreferenceY. Yang, L. Xing, J. G. Li, J. Palta, Y. Chen, G. Luxton, and A. Boyer, “ Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT,” Med. Phys. 30, 2937 – 2947 ( 2003 ). 10.1118/1.1617391
dc.identifier.citedreferenceN. Linthout, D. Verellen, S. Van Acker, and G. Storme, “ A simple theoretical verification of monitor unit calculation for intensity modulated beams using dynamic mini‐multileaf collimation,” J. Eur. Soc. Therap. Radiol. Oncol. 71, 235 – 241 ( 2004 ). 10.1016/j.radonc.2004.02.014
dc.identifier.citedreferenceX. Chen, N. J. Yue, W. Chen, C. B. Saw, D. E. Heron, D. Stefanik, R. Antemann, and M. S. Huq, “ A dose verification method using a monitor unit matrix for dynamic IMRT on Varian linear accelerators,” Phys. Med. Biol. 50, 5641 – 5652 ( 2005 ). 10.1088/0031‐9155/50/23/016
dc.identifier.citedreferenceK. M. Ayyangar, C. B. Saw, B. Shen, C. A. Enke, and P. S. Nizin, “ Independent dose calculations for the PEACOCK system,” Med. Dosim. 26, 29 – 35 ( 2001 ). 10.1016/S0958‐3947(00)00057‐1
dc.identifier.citedreferenceJ. P. Gibbons, K. Smith, D. Cheek, and I. Rosen, “ Independent calculation of dose for a helical tomotherapy unit,” J. Appl. Clin. Med. Phys. 10, 103 – 119 ( 2009 ). 10.1120/jacmp.v10i1.2772
dc.identifier.citedreferenceY. Watanabe, “ Point dose calculations using an analytical pencil beam kernel for IMRT plan checking,” Phys. Med. Biol. 46, 1031 – 1038 ( 2001 ). 10.1088/0031‐9155/46/4/309
dc.identifier.citedreferenceC. M. Ma, R. A. Price #1, J. S. Li, L. Chen, L. Wang, E. Fourkal, L. Qin, and J. Yang, “ Monitor unit calculation for Monte Carlo treatment planning,” Phys. Med. Biol. 49, 1671 – 1687 ( 2004 ). 10.1088/0031‐9155/49/9/006
dc.identifier.citedreferenceJ. Fan, J. Li, L. Chen, S. Stathakis, W. Luo, F. Du Plessis, W. Xiong, J. Yang, and C. M. Ma, “ A practical Monte Carlo MU verification tool for IMRT quality assurance,” Phys. Med. Biol. 51, 2503 – 2515 ( 2006 ). 10.1088/0031‐9155/51/10/010
dc.identifier.citedreferenceC. R. Baker, R. Clements, A. Gately, and G. J. Budgell, “ A separated primary and scatter model for independent dose calculation of intensity modulated radiotherapy,” J. Eur. Soc. Therap. Radiol. Oncol. 80, 385 – 390 ( 2006 ). 10.1016/j.radonc.2006.08.011
dc.identifier.citedreferenceJ. M. Galvin, G. Ezzell, A. Eisbrauch, C. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia, T. Lomax, D. A. Low, and J. Palta, “ Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine,” Int. J. Radiat., Oncol., Biol., Phys. 58, 1616 – 1634 ( 2004 ). 10.1016/j.ijrobp.2003.12.008
dc.identifier.citedreferenceT. Nyholm, J. Olofsson, A. Ahnesjo, D. Georg, and M. Karlsson, “ Pencil kernel correction and residual error estimation for quality‐index‐based dose calculations,” Phys. Med. Biol. 51, 6245 – 6262 ( 2006 ). 10.1088/0031‐9155/51/23/021
dc.identifier.citedreferenceJ. S. Tsai, M. J. Engler, and J. Liu, “ Quasi‐independent monitor unit calculation for intensity modulated sequential tomotherapy,” J. Appl. Clin. Med. Phys. 3, 135 – 153 ( 2002 ). 10.1120/1.1465772
dc.identifier.citedreferenceG. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, and C. X. Yu, “ Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,” Med. Phys. 30, 2089 – 2115 ( 2003 ). 10.1118/1.1591194
dc.identifier.citedreferenceG. S. Ibbott, A. Molineu, and D. S. Followill, “ Independent evaluations of IMRT through the use of an anthropomorphic phantom,” Technol. Cancer Res. Treat. 5, 481 – 487 ( 2006 ).
dc.identifier.citedreferenceJ. A. Purdy, W. B. Harms, W. F. Hanson, P. Kennedy, T. Kirby, A. Niroomand‐Rad, and J. R. Palta, AAPM RTC TG‐46: X‐ray Beam Central Axis Depth‐Dose Data for Use in Radiation Therapy, 1997.
dc.identifier.citedreferenceE. D. Yorke, R. Alecu, L. Ding, D. Fontenla, A. M. Kalend, D. Kaurin, M. E. Masterson‐McGary, G. Marinello, T. Matzen, A. Saini, J. Shi, W. E. Simon, T. C. Zhu, and X. R. Zhu, Report of Task Group 62 of the Radiation Therapy Committee: Diode In Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy, 2005.
dc.identifier.citedreferenceP. Vadash and B. Bjarngard, “ An equivalent‐square formula for head‐scatter factors,” Med. Phys. 20, 733 – 734 ( 1993 ). 10.1118/1.597024
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements, “ Determination of absorbed dose in a patient irradiated by beams of X or gamma rays in radiotherapy procedures,” ICRU Report No. 24 (International Commission on Radiation Units and Measurements, Washington, 1976 ).
dc.identifier.citedreferenceD. A. Jaffray, P. E. Lindsay, K. K. Brock, J. O. Deasy, and W. A. Tome, “ Accurate accumulation of dose for improved understanding of radiation effects in normal tissue,” Int. J. Radiat., Oncol., Biol., Phys. 76, S135 – S139 ( 2010 ). 10.1016/j.ijrobp.2009.06.093
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements, “ Use of computers in external beam radiotherapy procedures with high‐energy photons and electrons,” ICRU Report No. 42 (International Commission on Radiation Units and Measurements, Bethesda, 1987 ).
dc.identifier.citedreferenceG. J. Kutcher et al., “ Comprehensive QA for radiation oncology: Report of AAPM Radiation Therapy Committee Task Group 40,” Med. Phys. 21, 581 – 618 ( 1994 ). 10.1118/1.597316
dc.identifier.citedreferenceR. L. Stern, R. Heaton, M. W. Fraser, S. M. Goddu, T. H. Kirby, K. L. Lam, A. Molineu, and T. C. Zhu, “ Verification of monitor unit calculations for non‐IMRT clinical radiotherapy: Report of AAPM Task Group 114,” Med. Phys. 38, 504 – 530 ( 2011 ). 10.1118/1.3521473
dc.identifier.citedreferenceP. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. Rogers, “ AAPMˈs TG‐51 protocol for clinical reference dosimetry of high‐energy photon and electron beams,” Med. Phys. 26, 1847 – 1870 ( 1999 ). 10.1118/1.598691
dc.identifier.citedreferenceF. M. Khan, K. P. Doppke, K. R. Hogstrom, G. J. Kutcher, R. Nath, S. C. Prasad, J. A. Purdy, M. Rozenfeld, and B. L. Werner, “ Clinical electron‐beam dosimetry: Report of AAPM Radiation Therapy Committee Task Group No. 25,” Med. Phys. 18, 73 – 109 ( 1991 ). 10.1118/1.596695
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements, “ Prescribing, recording, and reporting photon beam therapy,” ICRU Report No. 50 (International Commission on Radiation Units and Measurements, Bethesda, 1993 ).
dc.identifier.citedreferenceA. Dutreix, B. Bjarngard, A. Bridier, B. Mijnheer, J. Shaw, and H. Svensson, “ Monitor Unit Calculation for High Energy Photon Beams,” ESTRO Booklet 3 ( Garant Publishers, Leuven, Belgium, 1997 ).
dc.identifier.citedreferenceT. C. Zhu, A. Ahnesjo, K. L. Lam, X. A. Li, C. M. Ma, J. R. Palta, M. B. Sharpe, B. Thomadsen, and R. C. Tailor, “ Report of AAPM Therapy Physics Committee Task Group 74: In‐air output ratio, Sc, for megavoltage photon beams,” Med. Phys. 36, 5261 – 5291 ( 2009 ). 10.1118/1.3227367
dc.identifier.citedreferenceA. Booth and D. W. Rogers, “ Monte Carlo study of effects of phantom size, radial position, and depth on photon beam calibration,” Report No. NRC Report PIRS‐507, 1995.
dc.identifier.citedreferenceB. R. Thomadsen, S. S. Kubsad, B. R. Paliwal, S. Shahabi, and T. R. Mackie, “ On the cause of the variation in tissue‐maximum ratio values with source‐to‐detector distance,” Med. Phys. 20, 723 – 727 ( 1993 ). 10.1118/1.597022
dc.identifier.citedreferenceM. J. Day and E. G. Aird, “ The equivalent field method for dose determinations in rectangular fields,” Br. J. Radiol., Suppl. 25, 138 – 151 ( 1996 ).
dc.identifier.citedreferenceT. D. Sterling, H. Perry, and L. Katz, “ Derivation of a mathematical expression for the percent depth dose surface of cobalt 60 beams and visualization of multiple field dose distributions,” Br. J. Radiol. 37, 544 – 550 ( 1964 ). 10.1259/0007‐1285‐37‐439‐544
dc.identifier.citedreferenceD. A. Jaffray, J. J. Battista, A. Fenster, and P. Munro, “ X‐ray sources of medical linear accelerators: Focal and extra‐focal radiation,” Med. Phys. 20, 1417 – 1427 ( 1993 ). 10.1118/1.597106
dc.identifier.citedreferenceA. Ahnesjo, T. Knoos, and A. Montelius, “ Application of the convolution method for calculation of output factors for therapy photon beams,” Med. Phys. 19, 295 – 301 ( 1992 ). 10.1118/1.596859
dc.identifier.citedreferenceM. B. Sharpe, D. A. Jaffray, J. J. Battista, and P. Munro, “ Extrafocal radiation: A unified approach to the prediction of beam penumbra and output factors for megavoltage x‐ray beams,” Med. Phys. 22, 2065 – 2074 ( 1995 ). 10.1118/1.597648
dc.identifier.citedreferenceK. L. Lam, M. S. Muthuswamy, and R. K. Ten Haken, “ Flattening‐filter‐based empirical methods to parametrize the head scatter factor,” Med. Phys. 23, 343 – 352 ( 1996 ). 10.1118/1.597798
dc.identifier.citedreferenceP. B. Dunscombe and J. M. Nieminen, “ On the field‐size dependence of relative output from a linear accelerator,” Med. Phys. 19, 1441 – 1444 ( 1992 ). 10.1118/1.596799
dc.identifier.citedreferenceA. Ahnesjo, “ Analytic modeling of photon scatter from flattening filters in photon therapy beams,” Med. Phys. 21, 1227 – 1235 ( 1994 ). 10.1118/1.597205
dc.identifier.citedreferenceM. K. Yu and R. Sloboda, “ Analytical representation of head scatter factors for shaped photon beams using a two‐component x‐ray source model,” Med. Phys. 23, 973 – 984 ( 1996 ). 10.1118/1.597827
dc.identifier.citedreferenceK. L. Lam and R. K. Ten Haken, “ Monitor unit calculations with head scatter factors,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons ( Advanced Medical Publishing, Inc., Madison, WI, 2000 ), p. 152.
dc.identifier.citedreferenceT. J. Jordan and P. C. Williams, “ The design and performance characteristics of a multileaf collimator,” Phys. Med. Biol. 39, 231 – 251 ( 1994 ). 10.1088/0031‐9155/39/2/002
dc.identifier.citedreferenceJ. R. Palta, D. K. Yeung, and V. Frouhar, “ Dosimetric considerations for a multileaf collimator system,” Med. Phys. 23, 1219 – 1224 ( 1996 ). 10.1118/1.597678
dc.identifier.citedreferenceI. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, and T. E. Schultheiss, “ Beam characteristics of a retrofitted double‐focused multileaf collimator,” Med. Phys. 25, 1676 – 1684 ( 1998 ). 10.1118/1.598348
dc.identifier.citedreferenceA. L. Boyer, T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C. J. Huntzinger, “ Clinical dosimetry for implementation of a multileaf collimator,” Med. Phys. 19, 1255 – 1261 ( 1992 ). 10.1118/1.596757
dc.identifier.citedreferenceE. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, “ Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance,” Int. J. Radiat., Oncol., Biol., Phys. 33, 1195 – 1208 ( 1995 ). 10.1016/0360‐3016(95)00198‐0
dc.identifier.citedreferenceF. M. Khan, The Physics of Radiation Therapy, 2nd ed. ( Williams and Wilkins, Baltimore, MD, 1994 ).
dc.identifier.citedreferenceJ. R. Palta, I. Daftari, and N. Suntharalingam, “ Field size dependence of wedge factors,” Med. Phys. 15, 624 – 626 ( 1988 ). 10.1118/1.596217
dc.identifier.citedreferenceD. B. Hughes, C. J. Karzmark, and R. M. Levy, “ Conventions for wedge filter specifications,” Br. J. Radiol. 45, 868 ( 1972 ). 10.1259/0007‐1285‐45‐539‐868‐a
dc.identifier.citedreferenceE. M. Dean and J. B. Davis, “ The variation of wedge factors with field size on a linear accelerator with wedge tray beneath secondary collimators,” Br. J. Radiol. 64, 184 – 185 ( 1991 ). 10.1259/0007‐1285‐64‐758‐184
dc.identifier.citedreferenceS. J. Thomas, “ The variation of wedge factors with field size on a linear accelerator,” Br. J. Radiol. 63, 355 – 356 ( 1990 ). 10.1259/0007‐1285‐63‐749‐355
dc.identifier.citedreferenceD. Georg, C. Garibaldi, and A. Dutreix, “ Measurements of basic parameters in wedged high‐energy photon beams using a mini‐phantom,” Phys. Med. Biol. 42, 1821 – 1831 ( 1997 ). 10.1088/0031‐9155/42/9/012
dc.identifier.citedreferenceD. D. Leavitt, M. Martin, J. H. Moeller, and W. L. Lee, “ Dynamic wedge field techniques through computer‐controlled collimator motion and dose delivery,” Med. Phys. 17, 87 – 91 ( 1990 ). 10.1118/1.596533
dc.identifier.citedreferenceN. Papanikolau, J. J. Battista, A. Boyer, C. Kappas, E. E. Klein, T. R. Mackie, M. B. Sharpe, and J. Van Dyk, Tissue Inhomogeneity Corrections for Megavoltage Photon Beams: Report of Task Group 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine, 2004.
dc.identifier.citedreferenceW. Mayneord and L. F. Lamerton, “ A survey of depth dose data,” Br. J. Radiol. 14, 255 – 264 ( 1941 ). 10.1259/0007‐1285‐14‐164‐255
dc.identifier.citedreferenceM. R. Sontag, “ Monitor unit calculations with heterogeneity corrections,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons ( Advanced Medical Publishing, Inc., Madison, WI, 2000 ), p. 152.
dc.identifier.citedreferenceH. F. Batho, “ Lung corrections in cobalt 60 therapy,” J. Can. Assoc. Radiol. 15, 79 – 83 ( 1964 ).
dc.identifier.citedreferenceM. R. Sontag and J. R. Cunningham, “ Corrections to absorbed dose calculations for tissue inhomogeneities,” Med. Phys. 4, 431 – 436 ( 1977 ). 10.1118/1.594329
dc.identifier.citedreferenceB. J. Gerbi, J. A. Antolak, F. C. Deibel, D. S. Followill, M. G. Herman, P. D. Higgins, M. S. Huq, D. N. Mihailidis, E. D. Yorke, K. R. Hogstrom, and F. M. Khan, “ Recommendations for clinical electron beam dosimetry: Supplement to the recommendations of Task Group 25,” Med. Phys. 36, 3239 – 3279 ( 2009 ). 10.1118/1.3125820
dc.identifier.citedreferenceA. S. Shiu, S. S. Tung, C. E. Nyerick, T. G. Ochran, V. A. Otte, A. L. Boyer, and K. R. Hogstrom, “ Comprehensive analysis of electron beam central axis dose for a radiotherapy linear accelerator,” Med. Phys. 21, 559 – 566 ( 1994 ). 10.1118/1.597313
dc.identifier.citedreferenceM. D. Mills, K. R. Hogstrom, and P. R. Almond, “ Prediction of electron beam output factors,” Med. Phys. 9, 60 – 68 ( 1982 ). 10.1118/1.595138
dc.identifier.citedreferenceJ. A. Meyer, J. R. Palta, and K. R. Hogstrom, “ Demonstration of relatively new electron dosimetry measurement techniques on the Mevatron 80,” Med. Phys. 11, 670 – 677 ( 1984 ). 10.1118/1.595550
dc.identifier.citedreferenceF. M. Khan, P. D. Higgins, B. J. Gerbi, F. C. Deibel, A. Sethi, and D. N. Mihailidis, “ Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields,” Phys. Med. Biol. 43, 2741 – 2754 ( 1998 ). 10.1088/0031‐9155/43/10/005
dc.identifier.citedreferenceF. M. Khan and P. D. Higgins, “ Calculation of depth dose and dose per monitor unit for irregularly shaped electron fields: An addendum,” Phys. Med. Biol. 44, N77 – N80 ( 1999 ). 10.1088/0031‐9155/44/6/401
dc.identifier.citedreferenceA. Kapur, C. M. Ma, E. C. Mok, D. O. Findley, and A. L. Boyer, “ Monte Carlo calculations of electron beam output factors for a medical linear accelerator,” Phys. Med. Biol. 43, 3479 – 3494 ( 1998 ). 10.1088/0031‐9155/43/12/007
dc.identifier.citedreferenceK. R. Hogstrom, R. E. Steadham, P.‐F. Wong, and A. S. Shiu, “ Monitor unit calculations for electron beams,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons ( Advanced Medical Publishing, Inc., Madison, WI, 2000 ), p. 152.
dc.identifier.citedreferenceI. J. Das, C. W. Cheng, R. J. Watts, A. Ahnesjo, J. Gibbons, X. A. Li, J. Lowenstein, R. K. Mitra, W. E. Simon, and T. C. Zhu, “ Accelerator beam data commissioning equipment and procedures: Report of the TG‐106 of the Therapy Physics Committee of the AAPM,” Med. Phys. 35, 4186 – 4215 ( 2008 ). 10.1118/1.2969070
dc.identifier.citedreferenceInternational Atomic Energy Agency, Absorbed Dose Determination in Photon and Electron Beams: An International Code of Practice ( International Atomic Energy Agency, Vienna, 1987 ).
dc.identifier.citedreferenceInternational Atomic Energy Agency, Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dsimetry Based on Standards of Absorbed Dose to Water ( International Atomic Energy Agency, Vienna, 2000 ).
dc.identifier.citedreferenceInternational Electrotechnical Commission, Medical Electrical Equipment: Dosimeters with Ionization Chambers as Used in Radiotherapy ( International Electrotechnical Commission, Geneva, 1997 ).
dc.identifier.citedreferenceInternational Commission on Radiation Units and Measurements, “ Radiation dosimetry: Electron beams with energies between 1 and 50 MeV,” ICRU Report No. 35 (International Commission on Radiation Units and Measurements, Bethesda, MD, 1984 ).
dc.identifier.citedreferenceInternational Atomic Energy Agency, The Use of Plane Parallel Ionization Chambers in High Energy Electron and Photon Beams: An International Code of Practice for Dosimetry ( International Atomic Energy Agency, Vienna, 1997 ).
dc.identifier.citedreferenceJ. L. Haybittle, A. L. Bradshaw, J. E. Burns, W. T. Morris, and W. G. Pitchford, “ Code of practice for electron beam dosimetry in radiotherapy,” Phys. Med. Biol. 30, 1169 – 1194 ( 1985 ). 10.1088/0031‐9155/30/11/001
dc.identifier.citedreferenceNACP, “ Electron beams with mean energies at the phantom surface below 15 MeV. Supplement to the recommendations by the Nordic Association of Clinical Physics (NACP) 1980,” Acta. Radiol. Oncol. 20, 401 – 415 ( 1981 ). 10.3109/02841868109130229
dc.identifier.citedreferenceP. R. Almond, R. J. Schulz, J. R. Cunningham, J. G. Holt, R. Loevinger, N. Suntharalingam, K. A. Wright, R. Nath, and G. D. Lempert, “ A protocol for the determination of absorbed dose from high‐energy photon and electron beams,” Med. Phys. 10, 741 – 771 ( 1983 ). 10.1118/1.595446
dc.identifier.citedreferenceI. J. Das, A. Ahnesjo, and C. W. Cheng, AAPM Task Group 155: Small Fields and Non‐Equilibrium Condition Photon Beam Dosimetry, 2012.
dc.identifier.citedreferenceJ. J. van Gasteren, S. Heukelom, H. J. van Kleffens, R. van der Laarse, J. L. Venselaar, and C. F. Westermann, “ The determination of phantom and collimator scatter components of the output of megavoltage photon beams: Measurement of the collimator scatter part with a beam‐coaxial narrow cylindrical phantom,” J. Eur. Soc. Therap. Radiol. Oncol. 20, 250 – 257 ( 1991 ). 10.1016/0167‐8140(91)90124‐Y
dc.identifier.citedreferenceT. J. Jordan, “ Megavoltage x‐ray beams: 2–50 MV,” Br. J. Radiol., Suppl. 25, 62 – 109 ( 1996 ).
dc.identifier.citedreferenceB. E. Bjarngard, T. C. Zhu, and C. Ceberg, “ Tissue‐phantom ratios from percentage depth doses,” Med. Phys. 23, 629 – 634 ( 1996 ). 10.1118/1.597698
dc.identifier.citedreferenceD. M. Frye, B. R. Paliwal, B. R. Thomadsen, and P. Jursinic, “ Intercomparison of normalized head‐scatter factor measurement techniques,” Med. Phys. 22, 249 – 253 ( 1995 ). 10.1118/1.597602
dc.identifier.citedreferenceR. K. Ten Haken, “ Comment on “Intercomparison on normalized head‐scatter factor measurement techniques ” [Med. Phys. 22, 249–253 (1995)],” Med. Phys. 22, 1471 – 1475 ( 1995 ). 10.1118/1.597572
dc.identifier.citedreferenceJ. J. van Gasteren, S. Heukelom, H. N. Jager, H. J. van Kleffens, R. van der Laarse, B. J. Mijnheer, J. L. Venselaar, and C. F. Westermann, “ Comments on “Intercomparison of normalized head‐scatter factor measurement techniques ” [Med. Phys. 22, 249–253 (1995)],” Med. Phys. 22, 1473 – 1475 ( 1995 ). 10.1118/1.597573
dc.identifier.citedreferenceP. A. Jursinic, “ Measurement of head scatter factors of linear accelerators with columnar miniphantoms,” Med. Phys. 33, 1720 – 1728 ( 2006 ). 10.1118/1.2201148
dc.identifier.citedreferenceX. A. Li, M. Soubra, J. Szanto, and L. H. Gerig, “ Lateral electron equilibrium and electron contamination in measurements of head‐scatter factors using miniphantoms and brass caps,” Med. Phys. 22, 1167 – 1170 ( 1995 ). 10.1118/1.597508
dc.identifier.citedreferenceP. Storchi and J. J. van Gasteren, “ A table of phantom scatter factors of photon beams as a function of the quality index and field size,” Phys. Med. Biol. 41, 563 – 571 ( 1996 ). 10.1088/0031‐9155/41/3/016
dc.identifier.citedreferenceF. M. Khan, B. J. Gerbi, and F. C. Deibel, “ Dosimetry of asymmetric x‐ray collimators,” Med. Phys. 13, 936 – 941 ( 1986 ). 10.1118/1.595822
dc.identifier.citedreferenceK. L. Prado and D. L. Royce, “ Asymmetric field calculations,” Med. Dosim. 17, 95 – 99 ( 1992 ).
dc.identifier.citedreferenceD. D. Loshek and K. A. Keller, “ Beam profile generator for asymmetric fields,” Med. Phys. 15, 604 – 610 ( 1988 ). 10.1118/1.596212
dc.identifier.citedreferenceJ. P. Gibbons and F. M. Khan, “ Calculation of dose in asymmetric photon fields,” Med. Phys. 22, 1451 – 1457 ( 1995 ). 10.1118/1.597569
dc.identifier.citedreferenceC. S. Chui, R. Mohan, and D. Fontenla, “ Dose computations for asymmetric fields defined by independent jaws,” Med. Phys. 15, 92 – 95 ( 1988 ). 10.1118/1.596164
dc.identifier.citedreferenceW. Kwa, R. O. Kornelsen, R. W. Harrison, and E. El‐Khatib, “ Dosimetry for asymmetric x‐ray fields,” Med. Phys. 21, 1599 – 1604 ( 1994 ). 10.1118/1.597260
dc.identifier.citedreferenceA. Ahnesjo, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, “ Beam modeling and verification of a photon beam multisource model,” Med. Phys. 32, 1722 – 1737 ( 2005 ). 10.1118/1.1898485
dc.identifier.citedreferenceT. C. Zhu and B. E. Bjarngard, “ Head scatter off‐axis for megavoltage x rays,” Med. Phys. 30, 533 – 543 ( 2003 ). 10.1118/1.1556609
dc.identifier.citedreferenceF. M. Khan, “ Monitor unit calculations for photon beams,” in Monitor Unit Calculations for External Photon and Electron Beams, edited by J. P. Gibbons ( Advanced Medical Publishing, Inc., Madison, WI, 2000 ), p. 152.
dc.identifier.citedreferenceL. E. Reinstein, “ New approaches to tissue compensation in radiation oncology,” in Advances in Radiation Oncology Physics: Dosimetry, Treatment Planning and Brachytherapy, edited by J. A. Purdy ( AIP, Woodbury, NY, 1992 ), pp. 535 – 572.
dc.identifier.citedreferenceF. R. Bagne, N. Samsami, S. W. Hoke, and D. G. Bronn, “ A study of effective attenuation coefficient for calculating tissue compensator thickness,” Med. Phys. 17, 117 – 121 ( 1990 ). 10.1118/1.596561
dc.identifier.citedreferenceS. Heukelom, J. H. Lanson, and B. J. Mijnheer, “ Wedge factor constituents of high energy photon beams: Field size and depth dependence,” J. Eur. Soc. Therap. Radiol. Oncol. 30, 66 – 73 ( 1994 ). 10.1016/0167‐8140(94)90011‐6
dc.identifier.citedreferenceR. C. Tailor, D. S. Followill, and W. F. Hanson, “ A first order approximation of field‐size and depth dependence of wedge transmission,” Med. Phys. 25, 241 – 244 ( 1998 ). 10.1118/1.598187
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.