Show simple item record

The impact of breathing motion versus heterogeneity effects in lung cancer treatment planning

dc.contributor.authorRosu, Mihaela
dc.contributor.authorChetty, Indrin J.
dc.contributor.authorTatro, Daniel S.
dc.contributor.authorTen Haken, Randall K.
dc.date.accessioned2017-01-06T20:47:17Z
dc.date.available2017-01-06T20:47:17Z
dc.date.issued2007-04
dc.identifier.citationRosu, Mihaela; Chetty, Indrin J.; Tatro, Daniel S.; Ten Haken, Randall K. (2007). "The impact of breathing motion versus heterogeneity effects in lung cancer treatment planning." Medical Physics 34(4): 1462-1473.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134883
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Association of Physicists in Medicine
dc.subject.otherlung heterogeneity
dc.subject.other4D planning
dc.subject.othercumulative doses
dc.subject.otherMonte Carlo
dc.subject.otherDosimetry
dc.subject.otherLungs
dc.subject.otherCancer
dc.subject.otherTissues
dc.subject.otherAnatomy
dc.subject.otherMedical treatment planning
dc.subject.otherPhotons
dc.subject.otherRadiation therapy
dc.subject.otherRadiation treatment
dc.subject.otherDrug delivery
dc.subject.otherDiseases
dc.subject.otherConformal radiation treatment
dc.subject.otherMonte Carlo methods
dc.subject.otherTreatment strategy
dc.subject.otherHemodynamics
dc.subject.otherPneumodyamics, respiration
dc.subject.otherdosimetry
dc.subject.othercancer
dc.subject.othertumours
dc.subject.otherlung
dc.subject.otherpneumodynamics
dc.subject.otherMonte Carlo methods
dc.titleThe impact of breathing motion versus heterogeneity effects in lung cancer treatment planning
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan 48109‐0010
dc.contributor.affiliationumDepartment of Radiation Oncology, The University of Michigan, Ann Arbor, Michigan 48109‐0010
dc.contributor.affiliationotherDepartment of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska 68198‐7521
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134883/1/mp3427.pdf
dc.identifier.doi10.1118/1.2713427
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceC. G. Orton et al., “ Study of lung density corrections in a clinical trial (RTOG 88‐08),” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(98)00117‐5 41, 787 – 794 ( 1998 ).
dc.identifier.citedreferenceJ. G. Armstrong et al., “ Strategy for dose escalation using 3‐dimensional conformal radiation therapy for lung cancer,” Ann. Oncol. 0923‐7534 --> 6, 693 – 697 ( 1995 ).
dc.identifier.citedreferenceK. E. Rosenzweig et al., “ Results of a Phase I dose escalation study in the treatment of inoperable non‐small‐cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys., Suppl. IOBSDC --> 0145‐1464 --> 57, S417 – S418 ( 2003 ).
dc.identifier.citedreferenceJ. G. Rosenman et al., “ High‐dose conformal radiotherapy for treatment of Stage IIIA/IIIB non‐small‐cell lung cancer Technical issues and results of a Phase I/II trial,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(02)02958‐9 54, 348 – 356 ( 2002 ).
dc.identifier.citedreferenceJ. S. A. Belderbos J. V. Lebesque, and I. Barillot, “ Normal tissue complication probabilities for irradiation of NSCLC patients with and without elective nodal irradiation,” Lung Cancer 0169‐5002 --> 18 (Suppl.), 126 ( 1997 ).
dc.identifier.citedreferenceM. A. Socinski et al., “ Induction and concurrent chemotherapy with high‐dose thoracic conformal radiation therapy in unresectable stage IIIA and IIIB non‐small‐cell lung cancer. A dose‐escalation phase I trial,” J. Clin. Oncol. JCONDN --> 0732‐183X --> 10.1200/JCO.2004.03.022 22, 4341 – 4350 ( 2004 ).
dc.identifier.citedreferenceR. K. Ten Haken et al., “ Use of Veff and iso‐NTCP in the implementation of dose escalation protocols,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 27, 689 – 695 ( 1993 ).
dc.identifier.citedreferenceJ. A. Hayman et al., “ Dose escalation in non‐small‐cell lung cancer using three‐dimensional conformal radiation therapy. Update of a phase I trial,” J. Clin. Oncol. JCONDN --> 0732‐183X --> 19, 127 – 136 ( 2001 ).
dc.identifier.citedreferenceS. Narayan et al., “ Results following treatment to doses of 92.4 or 102.9 Gy on a phase I dose escalation study for non‐small cell lung cancer,” Lung Cancer 0169‐5002 --> 44, 79 – 88 ( 2004 ).
dc.identifier.citedreferenceM. J. Berger and S. M. Seltzer, “ ETRAN, Monte Carlo code system for electron and photon transport through extended media,” ROSC computer package CCC‐107, Oak Ridge National Laboratory, Oak Ridge, TN, 1973.
dc.identifier.citedreferenceF. Salvat et al., “ PENELOPE, an algorithm and computer code for Monte Carlo simulation of electron‐photon shower,” Ciemant, Report No. 799, 1992.
dc.identifier.citedreferenceC. M. Ma et al., “ MCDOSE ‐ a Monte Carlo dose calculation tool for radiation therapy treatment planning,” Proceedings of the XIII International Conference on the Use of Computer in Radiation Therapy ( Springer‐Verlag, Heidelberg, 2000 ), pp. 123 – 125.
dc.identifier.citedreferenceM. Goosens, S. Giani, and S. Ravndal, “ GEANT: detector description and simulation tool,” Technical Report CERN Program library, long writeup W5013 CERN, Geneva, Switzerland, 1993.
dc.identifier.citedreferenceP. J. Keall and P. W. Hoban, “ Super‐Monte Carlo: A 3D electron beam dose calculation algorithm,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597842 23, 2023 – 2034 ( 1996 ).
dc.identifier.citedreferenceM. Fippel, “ Fast Monte dose calculation for photon beams based on the VMC electron algorithm,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598676 26, 1466 – 1475 ( 1999 ).
dc.identifier.citedreferenceJ. Deng et al., “ Photon beam characterization and modeling for Monte Carlo treatment planning,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/45/2/311 45, 411 – 427 ( 2000 ).
dc.identifier.citedreferenceJ. Sempau, S. J. Wilderman, and A. F. Bielajew, “ DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/45/8/315 45, 2263 – 2291 ( 2000 ).
dc.identifier.citedreferenceI. J. Chetty, J. J. DeMarco, and T. D. Solberg, “ A virtual source model for Monte Carlo modeling of arbitrary intensity distributions,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598881 27, 166 – 172 ( 2000 ).
dc.identifier.citedreferenceM. K. Fix et al., “ A multiple source model for 6 MV photon beam dose calculations,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/46/5/307 46, 1407 – 1428 ( 2001 ).
dc.identifier.citedreference“ VMC + +, electron and photon Monte Carlo calculations optimized for Radiation Treatment Planning,” Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo Meeting, Lisbon, edited by A. Kling, F. Barao, M. Nakagawa, L. Tavora, and P. Vaz ( Springer, Berlin, 2001 ), pp. 229 – 236.
dc.identifier.citedreferenceN. Papanikolaou et al., AAPM Report No. 85: “ Tissue inhomogeneity corrections for megavoltage photon beams,” Report of Task Group No. 65 of the Radiation Therapy Committee of the American Association of Physicists in Medicine, 2004.
dc.identifier.citedreferenceK. Mah and J. Van Dyk, “ On the impact of tissue inhomogeneity corrections in clinical thoracic radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 21, 1257 – 1267 ( 1991 ).
dc.identifier.citedreferenceA. Van’t Riet et al., “ Implications of lung corrections for dose specification in radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 11, 621 – 625 ( 1985 ).
dc.identifier.citedreferenceW. G. McKenna et al., “ Is correction for lung density in radiotherapy treatment planning necessary?,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 13, 273 – 278 ( 1987 ).
dc.identifier.citedreferenceC. G. Orton et al., “ Lung corrections in photon beam treatment planning: are we ready?,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10, 2191 – 2199 ( 1984 ).
dc.identifier.citedreferenceN. Papanikolaou, E. E. Klein, and W. R. Hendee, “ Heterogeneity corrections should be used in treatment planning for lung cancer?,” Med. Phys. MPHYA6 --> 0094‐2405 --> 27, 702 – 1704 ( 2004 ).
dc.identifier.citedreferenceD. T. Chang et al., “ The impact of heterogeneity correction on dosimetric parameters that predict for radiation pneumonitis,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2005.09.047 65, 125 – 131 ( 2006 ).
dc.identifier.citedreferenceP. J. Keall et al., “ Time ‐ The fourth dimension in radiotherapy, ASTRO panel presentation,” Int. J. Radiat. Oncol., Biol., Phys., Suppl. IOBSDC --> 0145‐1464 --> 57, S8 – S9 ( 2003 ).
dc.identifier.citedreferenceA. E. Lujan et al., “ A method for incorporating organ motion due to breathing into 3D dose calculations,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598577 26, 715 – 720 ( 1999 ).
dc.identifier.citedreferenceI. J. Chetty et al., “ Photon beam relative dose validation of the DPM Monte Carlo code in lung‐equivalent media,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1555671 30, 563 – 573 ( 2003 ).
dc.identifier.citedreferenceI. J. Chetty et al., “ Reporting and analyzing statistical uncertainties in Monte Carlo‐based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2006.03.039 65, 1249 – 1259 ( 2006 ).
dc.identifier.citedreferenceM. Rosu et al., “ Dose reconstruction in deforming lung anatomy: dose grid size effects and clinical implications,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1949749 32, 2487 – 2495 ( 2005 ).
dc.identifier.citedreferenceG. J. Kutcher and C. Burman, “ Calculation of complication probability factors for non‐uniform normal tissue irradiation: the effective volume method,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 16, 1623 – 1630 ( 1989 ).
dc.identifier.citedreferenceJ. Lyman, “ Complication probability as assessed from dose volume histograms,” Radiat. Res. RAREAE --> 0033‐7587 --> 10.2307/3576626 104, S13 – S19 ( 1985 ).
dc.identifier.citedreferenceY. Seppenwoolde et al., “ Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(02)03986‐X 55, 724 – 735 ( 2003 ).
dc.identifier.citedreferenceM. L. Kessler and M. Roberson, “ Image registration and data fusion for radiotherapy treatment planning,” in New Technologies in Radiation, edited by W. Schlegel, T. Bortfeld, and A. L. Grosu ( Springer‐Verlag, Berlin, 2005 ), pp. 41 – 52.
dc.identifier.citedreferenceM. Rosu et al., “ How extensive of a 4D dataset is needed to estimate cumulative dose distribution plan evaluation metrics in conformal lung therapy?,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2400624 34, 233 – 245 ( 2007 ).
dc.identifier.citedreferenceA. Niemierko, “ A generalized concept of equivalent uniform dose (EUD),” Med. Phys. MPHYA6 --> 0094‐2405 --> 26, 1100 ( 1999 ).
dc.identifier.citedreferenceR. K. Ten Haken et al., “ Potential benefits of eliminating planning target volume expansions for patient breathing in the treatment of liver tumors,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(97)00009‐6 38, 613 – 617 ( 1997 ).
dc.identifier.citedreferenceA. E. Lujan, J. M. Balter, and R. K. Ten Haken, “ A method of incorporating organ motion due to breathing into 3D dose calculations in the liver: Sensitivity to variations in motion,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1609057 30, 2643 – 2649 ( 2003 ).
dc.identifier.citedreferenceT. R. Mackie, J. W. Scrimger, and J. J. Battista, “ A convolution method of calculating dose for 15‐MV x‐rays,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595774 12, 188 – 196 ( 1985 ).
dc.identifier.citedreferenceE. Yorke et al., “ Dosimetric considerations in radiation therapy of coin lesions of the lung,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/0360‐3016(95)02036‐5 34, 481 – 487 ( 1996 ).
dc.identifier.citedreferenceM. Rosu et al., “ Alterations in normal liver doses due to organ motion,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2003.08.025 57, 1472 – 1479 ( 2003 ).
dc.identifier.citedreferenceJ. Van Dyk, T. J. Keane, and W. D. Rider, “ Lung density measured by computerized tomography: implications for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 8, 1363 – 1372 ( 1982 ).
dc.identifier.citedreferenceM. V. Graham et al., “ Preliminary results of a prospective trial using three‐dimensional radiotherapy for lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/0360‐3016(95)02016‐0 33, 993 – 1000 ( 1995 ).
dc.identifier.citedreferenceG. S. Sibley et al., “ Radiotherapy alone for medically inoperable Stage I non‐small‐cell lung cancer The Duke experience,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(97)00589‐0 40, 149 – 154 ( 1998 ).
dc.identifier.citedreferenceJ. D. Cox et al., “ A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: Possible survival benefit with > or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non‐small‐cell lung carcinoma: Report of Radiation Therapy Oncology Group 83‐11,” J. Clin. Oncol. JCONDN --> 0732‐183X --> 8, 1543 – 1555 ( 1990 ).
dc.identifier.citedreferenceR. O. Dillman et al., “ Improved survival in stage III non small cell lung cancer: Seven‐year follow‐up of Cancer and Leukemia Group B (CALGB) 8433 trial,” J. Natl. Cancer Inst. JNCIEQ --> 0027‐8874 --> 10.1093/jnci/88.17.1210 88, 1210 – 1215 ( 1996 ).
dc.identifier.citedreferenceW. T. Sause et al., “ Radiation Therapy Oncology Group (RTOG) 88‐08 and Eastern Cooperative Oncology Group (ECOG) 4588 Preliminary results of a phase III trial in regionally advanced, unresectable nonsmall‐cell lung cancer,” J. Natl. Cancer Inst. JNCIEQ --> 0027‐8874 --> 10.1093/jnci/87.3.198 87, 198 – 205 ( 1995 ).
dc.identifier.citedreferenceC. A. Perez et al., “ Patterns of tumor recurrence after definitive irradiation for inoperable non‐oat cell carcinoma of the lung,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 6, 987 – 994 ( 1980 ).
dc.identifier.citedreferenceC. A. Perez et al., “ Impact of tumor control on survival in carcinoma of the lung treated with irradiation,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 12, 539 – 547 ( 1986 ).
dc.identifier.citedreferenceS. Vijayakumar et al., “ Optimization of radical radiotherapy with beam’s eye view techniques for non‐small cell lung cancer,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 21, 779 – 788 ( 1991 ).
dc.identifier.citedreferenceF.‐M. Kong et al., “ High‐dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non‐small‐cell lung cancer: Long‐term results of a radiation dose escalation study,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2005.02.010 63, 324 – 333 ( 2005 ).
dc.identifier.citedreferenceJ. M. Robertson et al., “ Dose escalation for non‐small‐cell lung cancer using conformal radiation therapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(96)00593‐7 37, 1079 – 1085 ( 1997 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.