Show simple item record

Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carloâ based photon and electron external beam treatment planning

dc.contributor.authorChetty, Indrin J.
dc.contributor.authorCurran, Bruce
dc.contributor.authorCygler, Joanna E.
dc.contributor.authorDeMarco, John J.
dc.contributor.authorEzzell, Gary
dc.contributor.authorFaddegon, Bruce A.
dc.contributor.authorKawrakow, Iwan
dc.contributor.authorKeall, Paul J.
dc.contributor.authorLiu, Helen
dc.contributor.authorMa, C.‐m. Charlie
dc.contributor.authorRogers, D. W. O.
dc.contributor.authorSeuntjens, Jan
dc.contributor.authorSheikh‐bagheri, Daryoush
dc.contributor.authorSiebers, Jeffrey V.
dc.date.accessioned2017-01-06T20:47:23Z
dc.date.available2017-01-06T20:47:23Z
dc.date.issued2007-12
dc.identifier.citationChetty, Indrin J.; Curran, Bruce; Cygler, Joanna E.; DeMarco, John J.; Ezzell, Gary; Faddegon, Bruce A.; Kawrakow, Iwan; Keall, Paul J.; Liu, Helen; Ma, C.‐m. Charlie ; Rogers, D. W. O.; Seuntjens, Jan; Sheikh‐bagheri, Daryoush ; Siebers, Jeffrey V. (2007). "Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carloâ based photon and electron external beam treatment planning." Medical Physics 34(12): 4818-4853.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134887
dc.publisherWiley Periodicals, Inc.
dc.publisherAmerican Association of Physicists in Medicine
dc.subject.otherTissues
dc.subject.otherMonte Carlo methods
dc.subject.otherTreatment strategy
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherbiological tissues
dc.subject.otherdosimetry
dc.subject.otherMonte Carlo methods
dc.subject.otherradiation therapy
dc.subject.otherMonte Carlo dose calculation
dc.subject.otherclinical treatment planning
dc.subject.otherexperimental verification
dc.subject.otherMonte Carlo methods
dc.subject.otherDosimetry
dc.subject.otherPhotons
dc.subject.otherMedical treatment planning
dc.subject.otherMultileaf collimators
dc.subject.otherElectron beams
dc.subject.otherRadiation therapy
dc.subject.otherIntensity modulated radiation therapy
dc.subject.otherLungs
dc.titleReport of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carloâ based photon and electron external beam treatment planning
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109 andUniversity of Nebraska Medical Center, Omaha, Nebraska68198â 7521
dc.contributor.affiliationotherMayo Clinic Scottsdale, Scottsdale, Arizona 85259
dc.contributor.affiliationotherUniversity of California, Los Angeles, Callifornia90095
dc.contributor.affiliationotherOttawa Hospital Regional Cancer Center, Ottawa, Ontario K1H1C4, Canada
dc.contributor.affiliationotherThe Regional Cancer Center, Erie, Pennsylvania 16505
dc.contributor.affiliationotherFox Chase Cancer Center, Philadelphia, Pennsylvania19111
dc.contributor.affiliationotherCarleton University, Ottawa, Ontario K1S 5B6, Canada
dc.contributor.affiliationotherVirginia Commonwealth University, Richmond, Virginia23298
dc.contributor.affiliationotherUniversity of Texas MD Anderson Cancer Center, Houston, Texas 77030
dc.contributor.affiliationotherStanford University Cancer Center, Stanford, California94305â 5847
dc.contributor.affiliationotherNational Research Council of Canada, Ottawa, Ontario K1A0R6, Canada
dc.contributor.affiliationotherMcGill University, Montreal, Quebec H3G 1A4, Canada
dc.contributor.affiliationotherUniversity of California, San Francisco, California94143
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134887/1/mp5842.pdf
dc.identifier.doi10.1118/1.2795842
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceJ. V. Siebers, M. Lauterbach, P. J. Keall, and R. Mohan, â Incorporating multiâ leaf collimator leaf sequencing into iterative IMRT optimization,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1477230 29, 952 â 959 ( 2002 ).
dc.identifier.citedreferenceR. Mohan, C. Chui, and L. Lidofsky, â Differential pencil beam dose computation model for photons,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595924 13, 64 â 73 ( 1986 ).
dc.identifier.citedreferenceC. X. Yu, J. W. Wong, and J. A. Purdy, â Photon dose perturbations due to small inhomogeneities,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.596106 14, 78 â 83 ( 1987 ).
dc.identifier.citedreferenceM. R. Arnfield, C. H. Siantar, J. Siebers, P. Garmon, L. Cox, and R. Mohan, â The impact of electron transport on the accuracy of computed dose,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.599004 27, 1266 â 1274 ( 2000 ).
dc.identifier.citedreferenceF. C. du Plessis, C. A. Willemse, M. G. Lotter, and L. Goedhals, â Comparison of the Batho, ETAR and Monte Carlo dose calculation methods in CT based patient models,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1357223 28, 582 â 589 ( 2001 ).
dc.identifier.citedreferenceA. O. Jones and I. J. Das, â Comparison of inhomogeneity correction algorithms in small photon fields,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1861154 32, 766 â 776 ( 2005 ).
dc.identifier.citedreferenceT. Knoos, E. Wieslander, L. Cozzi, C. Brink, A. Fogliata, D. Albers, H. Nystrom, and S. Lassen, â Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/51/22/005 51, 5785 â 5807 ( 2006 ).
dc.identifier.citedreferenceM. Miften, M. Wiesmeyer, A. Kapur, and C. M. Ma, â Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system,â J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 10.1120/1.1328616 2, 21 â 31 ( 2001 ).
dc.identifier.citedreferenceR. Mohan, â Why Monte Carlo?,â in Proceedings of the 12th ICCR, edited by D. Leavitt ( Medical Physics, Salt Lake City, UT, 1997 ), pp. 16 â 18.
dc.identifier.citedreferenceS. N. Rustgi, A. K. Rustgi, S. B. Jiang, and K. M. Ayyangar, â Dose perturbation caused by highâ density inhomogeneities in small beams in stereotactic radiosurgery,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/43/12/009 43, 3509 â 3518 ( 1998 ).
dc.identifier.citedreferenceP. Carrasco et al., â Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1788932 31, 2899 â 2911 ( 2004 ).
dc.identifier.citedreferenceJ. Coleman, C. Joy, J. E. Park, P. Villarrealâ Barajas, P. L. Petti, and B. Faddegon, â A comparison of Monte Carlo and Fermiâ Eygesâ Hogstrom estimates of heart and lung dose from breast electron boost treatment,â Int. J. Radiat. Oncol. Biol. Phys. 61, 621 â 628 ( 2005 ). 0360‐3016 -->
dc.identifier.citedreferenceT. Krieger and O. A. Sauer, â Monte Carloâ versus pencilâ beamâ /collapsedâ cone dose calculation in a heterogeneous multiâ layer phantom,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/010 50, 859 â 868 ( 2005 ).
dc.identifier.citedreferenceW. U. Laub, A. Bakai, and F. Nusslin, â Intensity modulated irradiation of a thorax phantom: Comparisons between measurements, Monte Carlo calculations and pencil beam calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/6/308 46, 1695 â 1706 ( 2001 ).
dc.identifier.citedreferenceE. Spezi, D. G. Lewis, and C. W. Smith, â Monte Carlo simulation and dosimetric verification of radiotherapy beam modifiers,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/11/316 46, 3007 â 3029 ( 2001 ).
dc.identifier.citedreferenceL. Wang, M. Lovelock, and C. S. Chui, â Experimental verification of a CTâ based Monte Carlo doseâ calculation method in heterogeneous phantoms,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598802 26, 2626 â 2634 ( 1999 ).
dc.identifier.citedreferenceK. De Vlamynck, H. Palmans, F. Verhaegen, C. De Wagter, W. De Neve, and H. Thierens, â Dose measurements compared with Monte Carlo simulations of narrow 6 MV multileaf collimator shaped photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598693 26, 1874 â 1882 ( 1999 ).
dc.identifier.citedreferenceG. A. Ezzell et al., â Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1591194 30, 2089 â 2115 ( 2003 ).
dc.identifier.citedreferenceC. G. Orton, P. M. Mondalek, J. T. Spicka, D. S. Herron, and L. I. Andres, â Benchmark measurements for lung dose corrections for xâ ray beams,â Int. J. Radiat. Oncol. Biol. Phys. 10, 2191 â 2199 ( 1984 ). 0360‐3016 -->
dc.identifier.citedreferenceR. K. Rice, B. J. Mijnheer, and L. M. Chin, â Benchmark measurements for lung dose corrections for xâ rayâ beams,â Int. J. Radiat. Oncol. Biol. Phys. 15, 399 â 409 ( 1988 ). 0360‐3016 -->
dc.identifier.citedreferenceP. M. Charland, I. J. Chetty, S. Yokoyama, and B. A. Fraass, â Dosimetric comparison of extended dose range film with ionization measurements in water and lung equivalent heterogeneous media exposed to megavoltage photons,â J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 10.1120/1.1522990 4, 25 â 39 ( 2003 ).
dc.identifier.citedreferenceP. Dunscombe, P. McGhee, and E. Lederer, â Anthropomorphic phantom measurements for the validation of a treatment planning system,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/41/3/005 41, 399 â 411 ( 1996 ).
dc.identifier.citedreferenceS. Yokoyama, P. L. Roberson, D. L. Litzenberg, J. M. Moran, and B. A. Fraass, â Surface buildup dose dependence on photon field delivery technique for IMRT,â J. Appl. Clin. Med. Phys. 5, 71 â 81 ( 2004 ). 1526‐9914 -->
dc.identifier.citedreferenceT. Kron, A. Elliot, T. Wong, G. Showell, B. Clubb, and P. Metcalfe, â Xâ ray surface dose measurements using TLD extrapolation,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597019 20, 703 â 711 ( 1993 ).
dc.identifier.citedreferenceB. E. Bjarngard, P. Vadash, and T. Zhu, â Doses near the surface in highâ energy xâ ray beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597477 22, 465 â 468 ( 1995 ).
dc.identifier.citedreferenceA. S. Shiu et al., â Verification data for electron beam dose algorithms,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.596808 19, 623 â 636 ( 1992 ).
dc.identifier.citedreferenceR. A. Boyd, K. R. Hogstrom, J. A. Antolak, and A. S. Shiu, â A measured data set for evaluating electronâ beam dose algorithms,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1374245 28, 950 â 958 ( 2001 ).
dc.identifier.citedreferenceK. De Jaeger, M. S. Hoogeman, M. Engelsman, Y. Seppenwoolde, E. M. F. Damen, B. J. Mijnheer, L. J. Boersma, and J. V. Lebesque, â Incorporating an improved doseâ calculation algorithm in conformal radiotherapy of lung cancer: Reâ evaluation of dose in normal lung tissue,â Radiother. Oncol. RAONDT --> 0167‐8140 --> 10.1016/S0167â 8140(03)00195â 6 69, 1 â 10 ( 2003 ).
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, F. â M. Kong, C. Lopez, D. S. Tatro, D. L. McShan, B. A. Fraass, and R. K. Ten Haken, â On the correlation of doseâ volumeâ response using Monte Carlo dose calculation in conformal radiation therapy of lung cancer,â in Proceedings of the 14th ICCR, edited by B. Y. Yi, S. D. Ahn, E. K. Choi, and S. W. Ha ( Jeong, Seoul, Korea, 2004 ), pp. 457 â 460.
dc.identifier.citedreferenceP. E. Lindsay, I. El Naqa, A. Hope, M. Vicic, J. Cui, J. Bradley, and J. O. Deasy, â Retrospective Monte Carlo dose calculations with limited beam weight information,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2400826 34, 334 â 346 ( 2007 ).
dc.identifier.citedreferenceP. J. Keall, J. Siebers, and R. Mohan, â The impact of Monte Carlo dose calculations on treatment outcomes,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 425 â 427.
dc.identifier.citedreferenceN. Reynaert et al., â Monte Carlo treatment planning for photon and electron beams,â Radiat. Phys. Chem. 76, 643 â 686 ( 2007 ). 0969â 806X
dc.identifier.citedreferenceA. Fogliata, E. Vanetti, D. Albers, C. Brink, A. Clivio, T. Knoos, G. Nicolini, and L. Cozzi, â On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: Comparison with Monte Carlo calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/52/5/011 52, 1363 â 1385 ( 2007 ).
dc.identifier.citedreferenceT. Knoos, A. Ahnesjo, P. Nilsson, and L. Weber, â Limitations of a pencil beam approach to photon dose calculations in lung tissue,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/40/9/002 40, 1411 â 1420 ( 1995 ).
dc.identifier.citedreferenceP. N. McDermott, T. He, and A. DeYoung, â Dose calculation accuracy of lung planning with a commercial IMRT treatment planning system,â J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 10.1120/1.1623172 4, 341 â 351 ( 2003 ).
dc.identifier.citedreferenceM. F. Tsiakalos, K. Theodorou, C. Kappas, S. Zefkili, and J. C. Rosenwold, â Analysis of the penumbra enlargement in lung versus the quality index of photon beams: A methodology to check the dose calculation algorithm,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1669085 31, 943 â 949 ( 2004 ).
dc.identifier.citedreferenceE. D. Yorke, L. Wang, K. E. Rosenzweig, D. Mah, J. B. Paoli, and C. S. Chui, â Evaluation of deep inspiration breathâ hold lung treatment plans with Monte Carlo dose calculation,â Int. J. Radiat. Oncol. Biol. Phys. 53, 1058 â 1070 ( 2002 ). 0360‐3016 -->
dc.identifier.citedreferenceR. Timmerman, L. Papiez, R. McGarry, L. Likes, C. DesRosiers, S. Frost, and M. Williams, â Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I nonâ small cell lung cancer,â Chest CHETBF --> 0012‐3692 --> 10.1378/chest.124.5.1946 124, 1946 â 1955 ( 2003 ).
dc.identifier.citedreferenceL. Wang, E. Yorke, and C. S. Chui, â Monte Carlo evaluation of tissue inhomogeneity effects in the treatment of the head and neck,â Int. J. Radiat. Oncol. Biol. Phys. 50, 1339 â 1349 ( 2001 ). 0360‐3016 -->
dc.identifier.citedreferenceC. Boudreau, E. Heath, J. Seuntjens, O. Ballivy, and W. Parker, â IMRT head and neck treatment planning with a commercially available Monte Carlo based planning system,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/012 50, 879 â 890 ( 2005 ).
dc.identifier.citedreferenceJ. Seco, E. Adams, M. Bidmead, M. Partridge, and F. Verhaegen, â Headâ andâ neck IMRT treatments assessed with a Monte Carlo dose calculation engine,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/007 50, 817 â 830 ( 2005 ).
dc.identifier.citedreferenceC. Martens, N. Reynaert, C. De Wagter, P. Nilsson, M. Coghe, H. Palmans, H. Thierens, and W. De Neve, â Underdosage of the upperâ airway mucosa for small fields as used in intensityâ modulated radiation therapy: A comparison between radiochromic film measurements, Monte Carlo simulations, and collapsed cone convolution calculations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1487421 29, 1528 â 1535 ( 2002 ).
dc.identifier.citedreferenceF. Verhaegen, I. J. Das, and H. Palmans, â Monte Carlo dosimetry study of a 6 MV stereotactic radiosurgery unit,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/43/10/006 43, 2755 â 2768 ( 1998 ).
dc.identifier.citedreferenceF. Sánchezâ Doblado et al., â Ionization chamber dosimetry of small photon fields: A Monte Carlo study on stoppingâ power ratios for radiosurgery and IMRT beams,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/14/304 48, 2081 â 2099 ( 2003 ).
dc.identifier.citedreferenceA. Chaves, M. C. Lopes, C. C. Alves, C. Oliveira, L. Peralta, P. Rodrigues, and A. Trindade, â A Monte Carlo multiple source model applied to radiosurgery narrow photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1766419 31, 2192 â 2204 ( 2004 ).
dc.identifier.citedreferenceJ. S. Li et al., â Clinical implementation of intensityâ modulated tangential beam irradiation for breast cancer,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1690195 31, 1023 â 1031 ( 2004 ).
dc.identifier.citedreferenceJ. J. DeMarco, I. J. Chetty, and T. D. Solberg, â A Monte Carlo tutorial and the application for radiotherapy treatment planning,â Med. Dosim. 27, 43 â 50 ( 2002 ). 0958‐3947 -->
dc.identifier.citedreferenceA. Leal, F. Sanchezâ Doblado, R. Arrans, J. Rosello, E. C. Pavon, and J. I. Lagares, â Routine IMRT verification by means of an automated Monte Carlo simulation system,â Int. J. Radiat. Oncol. Biol. Phys. 56, 58 â 68 ( 2003 ). 0360‐3016 -->
dc.identifier.citedreferenceG. X. Ding, D. M. Duggan, C. W. Coffey, P. Shokrani, and J. E. Cygler, â First macro Monte Carlo based commercial dose calculation module for electron beam treatment planningâ New issues for clinical consideration,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/51/11/007 51, 2781 â 2799 ( 2006 ).
dc.identifier.citedreferenceD. W. O. Rogers, A. F. Bielajew, and A. E. Nahum, â Monte Carlo calculations of electron beams in standard dose planning geometries,â in Proceedings of the 8th ICCR ( IEEE, New York, 1984 ), pp. 140 â 144.
dc.identifier.citedreferenceC. Scherf, J. Scherer, and L. Bogner, â Verification and application of the Voxelâ based Monte Carlo ( VMC + + ) electron dose module of oncentratrade mark MasterPlan,â Strahlenther. Onkol. 183, 81 â 88 ( 2007 ). 0179‐7158 -->
dc.identifier.citedreferenceK. R. Shortt, C. K. Ross, A. F. Bielajew, and D. W. O. Rogers, â Electron beam dose distributions near standard inhomogeneities,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/31/3/003 31, 235 â 249 ( 1986 ).
dc.identifier.citedreferenceE. Wieslander and T. Knoos, â A virtualâ acceleratorâ based verification of a Monte Carlo dose calculation algorithm for electron beam treatment planning in clinical situations,â Radiother. Oncol. 82, 208 â 217 ( 2007 ). 0167‐8140 -->
dc.identifier.citedreferenceJ. Cygler, J. J. Battista, J. W. Scrimger, E. Mah, and J. Antolak, â Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/32/9/001 32, 1073 â 1086 ( 1987 ).
dc.identifier.citedreferenceJ. A. Hayman et al., â Dose escalation in nonâ smallâ cell lung cancer using threeâ dimensional conformal radiation therapy: Update of a phase I trial,â J. Clin. Oncol. 19, 127 â 136 ( 2001 ). 0732â 183X
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, D. L. McShan, B. A. Fraass, and R. K. Ten Haken, â The influence of beam model differences in the comparison of dose calculation algorithms for lung cancer treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/006 50, 801 â 815 ( 2005 ).
dc.identifier.citedreferenceF. M. Kong, R. K. Ten Haken, M. J. Schipper, M. A. Sullivan, M. Chen, C. Lopez, G. P. Kalemkerian, and J. A. Hayman, â Highâ dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable nonâ smallâ cell lung cancer: Longâ term results of a radiation dose escalation study,â Int. J. Radiat. Oncol. Biol. Phys. 63, 324 â 333 ( 2005 ). 0360‐3016 -->
dc.identifier.citedreferenceI. J. Chetty, â Monte Carlo treatment planning: The influence of â variance reductionâ techniques (ECUT, PCUT, ESTEP) on the accuracy and speed of dose calculations,â Med. Phys. 32, 2018 (abstract) ( 2005 ). 0094‐2405 -->
dc.identifier.citedreferencewww.irs.inms.nrc.ca/inms/irs/papers/iccr00/iccr00.html.
dc.identifier.citedreferenceE. Heath, McGill University (personal communication).
dc.identifier.citedreferenceE. Poon and F. Verhaegen, McGill University (personal communication).
dc.identifier.citedreferenceN. Papanikolaou, J. Battista, A. Boyer, C. Kappas, E. Klein, T. Mackie, M. Sharpe, and J. Van Dyk, â AAPM Report No. 85: Tissue inhomogeneity corrections for megavoltage photon beams,â in AAPM Report No. 85 ( Medical Physics, Madison, WI, 2004 ), pp. 1 â 135.
dc.identifier.citedreferenceA. Dutreix, â When and how can we improve precision in radiotherapy?,â Radiother. Oncol. RAONDT --> 0167‐8140 --> 10.1016/S0167â 8140(84)80070â 5 2, 275 â 292 ( 1984 ).
dc.identifier.citedreferenceC. G. Orton, P. M. Mondalek, J. T. Spicka, D. S. Herron, and L. I. Andres, â Lung corrections in photon beam treatment planning: Are we ready?,â Int. J. Radiat. Oncol. Biol. Phys. 10, 2191 â 2199 ( 1984 ). 0360‐3016 -->
dc.identifier.citedreferenceJ. G. Stewart and A. W. Jackson, â The steepness of the dose response curve both for tumor cure and normal tissue injury,â Laryngoscope 85, 1107 â 1111 ( 1975 ). 0023â 852X
dc.identifier.citedreferenceM. Goitein and J. Busse, â Immobilization error: Some theoretical considerations,â Radiology 117, 407 â 412 ( 1975 ). 0033‐8419 -->
dc.identifier.citedreferencehttp://eom.springer.de/B/b017750.htm
dc.identifier.citedreferenceN. Metropolis, â The beginning of the MC Method,â Los Alamos Sci. 15, 125 â 130 ( 1987 ); see http://library.lanl.gov/laâ pubs/00326866.pdf.
dc.identifier.citedreferenceD. W. O. Rogers and A. F. Bielajew, in The Dosimetry of Ionizing Radiation, edited by B. Bjarngard, K. Kase, and F. Attix ( Academic, New York, 1990 ), Vol. III, pp. 427 â 539.
dc.identifier.citedreferenceM. J. Berger, in Methods in Computational Physics, edited by S. Fernbach, B. Alder, and M. Rothenberg ( Academic, New York, 1963 ), Vol. 1.
dc.identifier.citedreferenceM. Berger and S. Seltzer, â ETRAN Monte Carlo code system for electron and photon transport through extended media,â Radiation Shielding Information Center (RSIC) Report CCCâ 107, Oak Ridge National Laboratory, Oak Ridge, TN, 1973.
dc.identifier.citedreferenceJ. F. Briesmeister, â MCNPâ A general Monte Carlo N â particle transport code, version 4A,â Report LAâ 12625â M, Los Alamos National Laboratory, Los Alamos, NM, 1993.
dc.identifier.citedreferenceW. R. Nelson, H. Hirayama, and D. W. O. Rogers, â The EGS4 code system,â Report SLACâ 265, Stanford Linear Accelerator, Stanford, CA, 1985.
dc.identifier.citedreferenceP. L. Petti, M. S. Goodman, T. A. Gabriel, and R. Mohan, â Investigation of buildup dose from electron contamination of clinical photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595287 10, 18 â 24 ( 1983 ).
dc.identifier.citedreferenceR. Mohan, C. Chui, and L. Lidofsky, â Energy and angular distributions of photons from medical linear accelerators,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595680 12, 592 â 597 ( 1985 ).
dc.identifier.citedreferenceM. Udale, â A Monte Carlo investigation of surface doses for broad electron beams,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/33/8/004 33, 939 â 954 ( 1988 ).
dc.identifier.citedreferenceR. L. Ford and W. R. Nelson, â The EGS code systemâ Version 3,â Report SLACâ 210, Stanford Linear Accelerator, Stanford, CA, 1978.
dc.identifier.citedreferenceI. Kawrakow and D. W. O. Rogers, â The EGSnrc code system: Monte Carlo simulation of electron and photon transport,â Technical Report PIRSâ 701, National Research Council of Canada, Ottawa, Ontario, 2000.
dc.identifier.citedreferenceP. R. Almond, P. J. Biggs, B. M. Coursey, W. F. Hanson, M. S. Huq, R. Nath, and D. W. O. Rogers, â AAPM’s TGâ 51 protocol for clinical reference dosimetry of highâ energy photon and electron beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598691 26, 1847 â 1870 ( 1999 ).
dc.identifier.citedreferenceB. A. Faddegon, P. O’Brien, and D. L. Mason, â The flatness of Siemens linear accelerator xâ ray fields,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598508 26, 220 â 228 ( 1999 ).
dc.identifier.citedreferenceM. B. Tacke, H. Szymanowski, U. Oelfke, C. Schulze, S. Nuss, E. Wehrwein, and S. Leidenberger, â Assessment of a new multileaf collimator concept using GEANT4 Monte Carlo simulations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2181298 33, 1125 â 1132 ( 2006 ).
dc.identifier.citedreferenceA. Ito, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 573 â 598.
dc.identifier.citedreferenceA. E. Nahum, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 3 â 20.
dc.identifier.citedreferenceD. W. O. Rogers, B. A. Faddegon, G. X. Ding, C. M. Ma, J. We, and T. R. Mackie, â BEAM: A Monte Carlo code to simulate radiotherapy treatment units,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597552 22, 503 â 524 ( 1995 ).
dc.identifier.citedreferenceC. â M. Ma and S. B. Jiang, â Monte Carlo modelling of electron beams from medical accelerators,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/44/12/201 44, R157 â R189 ( 1999 ).
dc.identifier.citedreferenceF. Verhaegen and J. Seuntjens, â Monte Carlo modelling of external radiotherapy photon beams,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/21/R01 48, R107 â R164 ( 2003 ).
dc.identifier.citedreferenceJ. E. Cygler, G. M. Daskalov, G. H. Chan, and G. X. Ding, â Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1633105 31, 142 â 153 ( 2004 ).
dc.identifier.citedreferenceC. L. Hartmann Siantar, â Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1381551 28, 1322 â 1337 ( 2001 ).
dc.identifier.citedreferenceP. Andreo, â Monte Carlo techniques in medical radiation physics,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/36/7/001 36, 861 â 920 ( 1991 ).
dc.identifier.citedreferenceD. E. Raeside, â Monte Carlo principles and applications,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/21/2/001 21, 181 â 197 ( 1976 ).
dc.identifier.citedreferenceD. W. O. Rogers, â Fifty years of Monte Carlo simulations for medical physics,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/51/13/R17 51, R287 â R301 ( 2006 ).
dc.identifier.citedreferenceJ. E. Turner, H. A. Wright, and R. N. Hamm, â A Monte Carlo primer for health physicists,â Health Phys. 48, 717 â 733 ( 1985 ). 0017‐9078 -->
dc.identifier.citedreferenceF. B. Brown, â MCNPâ A general Monte Carloâ particle transport code, version 5,â Report LAâ URâ 03 1987, Los Alamos National Laboratory, Los Alamos, NM, 2003.
dc.identifier.citedreferenceS. Agostinelli, â GEANT4 â A simulation toolkit,â Nucl. Instrum. Methods Phys. Res. A NIMAER --> 0168‐9002 --> 10.1016/S0168â 9002(03)01368â 8 506, 250 â 303 ( 2003 ).
dc.identifier.citedreferenceJ. Baro, J. Sempau, J. M. Fernandezâ Varea, and F. Salvat, â PENELOPE â An algorithm for Monteâ Carlo simulation of the penetration and energyâ loss of electrons and positrons in matter,â Nucl. Instrum. Methods Phys. Res. A 100, 31 â 46 ( 1995 ). 0168‐9002 -->
dc.identifier.citedreferenceM. Fippel, â Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598676 26, 1466 â 1475 ( 1999 ).
dc.identifier.citedreferenceI. Kawrakow, â VMC + +, electron and photon Monte Carlo calculations optimized for radiation treatment planning,â in Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Meeting Lisbon, edited by A. Kling, F. Barao, M. Nakagawa, L. Tavora, and P. Vaz ( Springer, Berlin, 2001 ), pp. 229 â 236.
dc.identifier.citedreferenceI. Kawrakow, M. Fippel, and K. Friedrich, â 3D electron dose calculation using a Voxel based Monte Carlo algorithm ( VMC ),â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597673 23, 445 â 457 ( 1996 ).
dc.identifier.citedreferenceH. Neuenschwander and E. J. Born, â A macro Monteâ Carlo method for electronâ beam dose calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/37/1/007 37, 107 â 125 ( 1992 ).
dc.identifier.citedreferenceJ. Sempau, S. J. Wilderman, and A. F. Bielajew, â DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/8/315 45, 2263 â 2291 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598917 27, 485 â 498 ( 2000 ).
dc.identifier.citedreferenceA. F. Bielajew and D. W. O. Rogers, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 115 â 137.
dc.identifier.citedreferenceI. Kawrakow and A. F. Bielajew, â On the condensed history technique for electron transport,â Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 0168â 583X 10.1016/S0168â 583X(98)00274â 2 142, 253 â 280 ( 1998 ).
dc.identifier.citedreferenceE. W. Larsen, â A theoretical derivation of the condensed history algorithm,â Ann. Nucl. Energy ANENDJ --> 0306‐4549 --> 10.1016/0306â 4549(92)90013â 2 19, 701 â 714 ( 1992 ).
dc.identifier.citedreferenceI. Kawrakow, â Accurate condensed history Monte Carlo simulation of electron transport. II. Application to ion chamber response simulations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598918 27, 499 â 513 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow and M. Fippel, â Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/8/308 45, 2163 â 2183 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, D. W. O. Rogers, and B. R. B. Walters, â Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1788912 31, 2883 â 2898 ( 2004 ).
dc.identifier.citedreferenceI. Kawrakow and B. R. B. Walters, â Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2219778 33, 3046 â 3056 ( 2006 ).
dc.identifier.citedreferenceB. Fraass, K. Doppke, M. Hunt, G. Kutcher, G. Starkschall, R. Stern, and J. Van Dyke, â American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598373 25, 1773 â 1829 ( 1998 ).
dc.identifier.citedreferenceIAEAâ Technical Report Series No. 430: Commissioning and quality qssurance of computerized planning systems for radiation treatment of cancer,â in International Atomic Energy Agency, Vienna, 2004.
dc.identifier.citedreferenceJ. Van Dyk, R. B. Barnett, J. E. Cygler, and P. C. Shragge, â Commissioning and quality assurance of treatment planning computers,â Int. J. Radiat. Oncol. Biol. Phys. 26, 261 â 273 ( 1993 ). 0360‐3016 -->
dc.identifier.citedreferenceD. W. O. Rogers and A. F. Bielajew, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 407 â 419.
dc.identifier.citedreferenceI. Kawrakow, â On the efficiency of photon beam treatment head simulations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1943808 32, 2320 â 2326 ( 2005 ).
dc.identifier.citedreferenceC. â M. Ma et al., â A Monte Carlo dose calculation tool for radiotherapy treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/10/305 47, 1671 â 1689 ( 2002 ).
dc.identifier.citedreferenceJ. A. Halbleib, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 249 â 262.
dc.identifier.citedreferenceJ. A. Halbleib and T. A. Melhorn, â ITS: The integrated TIGER series of coupled electron/photon Monte Carlo transport codes,â Sandia Report SAND84â 0573, Sandia National Laboratory, Albuquerque, NM, 1984.
dc.identifier.citedreferenceS. M. Seltzer, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 153 â 182.
dc.identifier.citedreferenceD. W. O. Rogers, B. Walters, and I. Kawrakow, â BEAMnrc Users Manual,â NRC Report PIRS 509(a)revH, 2004.
dc.identifier.citedreferenceB. R. B. Walters and D. W. O. Rogers, â DOSXYZnrc Users Manual,â NRC Report PIRS 794 (rev B), 2004.
dc.identifier.citedreferenceD. W. O. Rogers, â The role of Monteâ Carlo simulation of electronâ transport in radiationâ dosimetry,â Appl. Radiat. Isot. 42, 965 â 974 ( 1991 ). 0969‐8043 -->
dc.identifier.citedreferenceT. R. Mackie, S. S. Kubsad, D. W. O. Rogers, and A. F. Bielajew, â The OMEGA project: Electron dose planning using Monte Carlo simulation,â Med. Phys. 17, 730 (abstract) ( 1990 ). 0094‐2405 -->
dc.identifier.citedreferenceJ. Siebers and R. Mohan, â Monte Carlo and IMRT,â in Intensity Modulated Radiation Therapy, The State of the Art, Proceedings of the 2003 AAPM Summer School, edited by T. R. Mackie and J. R. Palta ( Advanced Medical, Madison, WI, 2003 ), pp. 531 â 560.
dc.identifier.citedreferenceA. Leal, F. Sanchezâ Doblado, R. Arrans, M. Perucha, M. Rincon, E. Carrasco, and C. Bernal, â Monte Carlo simulation of complex radiotherapy treatments,â Comput. Sci. Eng. CSENFA --> 1521‐9615 --> 10.1109/MCSE.2004.4 6, 60 â 68 ( 2004 ).
dc.identifier.citedreferenceN. Tyagi, A. Bose, and I. J. Chetty, â Implementation of the DPM Monte Carlo Code on a parallel architecture for treatment planning applications,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1786691 31, 2721 â 2725 ( 2004 ).
dc.identifier.citedreferenceJ. M. Fernandezâ Varea, R. Mayol, J. Baro, and F. Salvat, â On the theory and simulation of multiple elasticâ scattering of electrons,â Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 0168â 583X 10.1016/0168â 583X(93)95827â R 73, 447 â 473 ( 1993 ).
dc.identifier.citedreferenceA. E. Schach von Wittenau, L. J. Cox, P. M. Bergstrom, Jr., W. P. Chandler, C. L. Hartmann Siantar, and R. Mohan, â Correlated histogram representation of Monte Carlo derived medical accelerator photonâ output phase space,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598613 26, 1196 â 1211 ( 1999 ).
dc.identifier.citedreferenceA. E. Schach von Wittenau, P. M. Bergstrom, Jr., and L. J. Cox, â Patientâ dependent beamâ modifier physics in Monte Carlo photon dose calculations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598959 27, 935 â 947 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â Electron transport: Multiple and plural scattering,â Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 0168â 583X 10.1016/0168â 583X(95)01046â 7 108, 23 â 34 ( 1996 ).
dc.identifier.citedreferenceI. Kawrakow and A. F. Bielajew, â Recent improvements and accuracy tests of the VOXEL Monte Carlo algorithm,â Med. Phys. 24, 1049 (abstract) ( 1997 ).
dc.identifier.citedreferenceP. J. Keall and P. W. Hoban, â Superposition dose calculation incorporating Monte Carlo generated electron track kernels,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597679 23, 479 â 485 ( 1996 ).
dc.identifier.citedreferenceL. Wang, C. S. Chui, and M. Lovelock, â A patientâ specific Monte Carlo doseâ calculation method for photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598262 25, 867 â 878 ( 1998 ).
dc.identifier.citedreferenceR. Doucet, M. Olivares, F. DeBlois, E. B. Podgorsak, I. Kawrakow, and J. Seuntjens, â Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/15/307 48, 2339 â 2354 ( 2003 ).
dc.identifier.citedreferenceM. Fippel, â Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1710734 31, 1235 â 1242 ( 2004 ).
dc.identifier.citedreferenceM. Fippel, F. Haryanto, O. Dohm, F. Nusslin, and S. Kriesen, â A virtual photon energy fluence model for Monte Carlo dose calculation,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1543152 30, 301 â 311 ( 2003 ).
dc.identifier.citedreferenceM. Fippel, I. Kawrakow, and K. Friedrich, â Electron beam dose calculations with the VMC algorithm and the verification data of the NCI working group,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/42/3/005 42, 501 â 520 ( 1997 ).
dc.identifier.citedreferenceM. Fippel, W. Laub, B. Huber, and F. Nusslin, â Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm,â Phys. Med. Biol. 44, 3039 â 3054 ( 1999 ).
dc.identifier.citedreferenceM. Fippel and F. Nusslin, â Evaluation of a clinical Monte Carlo dose calculation code based on the ICCR benchmark test,â Med. Phys. 28, 1198 (abstract) ( 2001 ). 0094‐2405 -->
dc.identifier.citedreferenceI. Kawrakow and A. F. Bielajew, â On the representation of electron multiple elasticâ scattering distributions for Monte Carlo calculations,â Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 0168â 583X 10.1016/S0168â 583X(97)00723â 4 134, 325 â 336 ( 1998 ).
dc.identifier.citedreferenceH. Neuenschwander, T. R. Mackie, and P. J. Reckwerdt, â MMC â A highâ performance Monte Carlo code for electron beam treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/40/4/005 40, 543 â 574 ( 1995 ).
dc.identifier.citedreferenceC. Cris, E. Born, R. Mini, H. Neuenschwander, and W. Volken, â A scaling method for multiple source models,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 411 â 413.
dc.identifier.citedreferenceP. Pemler, J. Besserer, U. Schneider, and H. Neuenschwander, â Evaluation of a commercial electron treatment planning system based on Monte Carlo techniques (eMC),â Z. Med. Phys. 16, 313 â 329 ( 2006 ). 0939‐3889 -->
dc.identifier.citedreferenceC. â M. Ma, J. S. Li, T. Pawlicki, S. B. Jiang, and J. Deng, â MCDOSE â A Monte Carlo dose calculation tool for radiation therapy treatment planning,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 411 â 413.
dc.identifier.citedreferenceJ. V. Siebers, P. J. Keall, J. Kim, and R. Mohan, â Performance benchmarks of the MCV Monte Carlo System,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 129 â 131.
dc.identifier.citedreferenceJ. V. Siebers, P. J. Keall, J. O. Kim, and R. Mohan, â A method for photon beam Monte Carlo multileaf collimator particle transport,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/17/312 47, 3225 â 3249 ( 2002 ).
dc.identifier.citedreferenceI. J. Chetty, P. M. Charland, N. Tyagi, D. L. McShan, B. A. Fraass, and A. F. Bielajew, â Photon beam relative dose validation of the DPM Monte Carlo code in lungâ equivalent media,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1555671 30, 563 â 573 ( 2003 ).
dc.identifier.citedreferenceI. J. Chetty, N. Tyagi, M. Rosu, P. M. Charland, D. L. McShan, R. K. Ten Haken, B. A. Fraass, and A. F. Bielajew, â Clinical implementation, validation and use of the DPM Monte Carlo code for radiotherapy treatment planning,â in Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, Gatlinburg, TN ( American Nuclear Society, LaGrange Park, IL, 2003 ), Vol. 119, pp. 1 â 17.
dc.identifier.citedreferenceJ. J. DeMarco, T. D. Solberg, and J. B. Smathers, â A CTâ based Monte Carlo simulation tool for dosimetry planning and analysis,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598167 25, 1 â 11 ( 1998 ).
dc.identifier.citedreferenceR. F. Aaronson, J. J. DeMarco, I. J. Chetty, and T. D. Solberg, â A Monte Carlo based phase space model for quality assurance of intensity modulated radiotherapy incorporating leaf specific characteristics,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1523409 29, 2952 â 2958 ( 2002 ).
dc.identifier.citedreferenceI. Chetty, J. J. DeMarco, and T. D. Solberg, â A virtual source model for Monte Carlo modeling of arbitrary intensity distributions,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598881 27, 166 â 172 ( 2000 ).
dc.identifier.citedreferenceI. J. Chetty, J. J. DeMarco, T. D. Solberg, A. R. Arellano, R. Fogg, and A. V. Mesa, â A phase space model for simulating arbitrary intensity distributions for shaped radiosurgery beams using the Monte Carlo method,â Radiosurgery 3, 41 â 52 ( 2000 ).
dc.identifier.citedreferenceT. D. Solberg et al., â A review of radiation dosimetry applications using the MCNP Monte Carlo code,â Radiochim. Acta 89, 337 â 355 ( 2001 ).
dc.identifier.citedreferenceT. D. Solberg, J. J. DeMarco, F. E. Holly, J. B. Smathers, and A. A. F. DeSalles, â Monte Carlo treatment planning for stereotactic radiosurgery,â Radiother. Oncol. RAONDT --> 0167‐8140 --> 10.1016/S0167â 8140(98)00065â 6 49, 73 â 84 ( 1998 ).
dc.identifier.citedreferenceM. K. Fix, P. Manser, E. J. Born, R. Mini, and P. Ruegsegger, â Monte Carlo simulation of a dynamic MLC based on a multiple source model,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/12/312 46, 3241 â 3257 ( 2001 ).
dc.identifier.citedreferenceJ. H. Hubbell, â Review of photon interaction cross section data in the medical and biological context,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/44/1/001 44, R1 â R22 ( 1999 ).
dc.identifier.citedreferenceM. K. Fix, M. Stampanoni, P. Manser, E. J. Born, R. Mini, and P. Ruegsegger, â A multiple source model for 6 MV photon beam dose calculations using Monte Carlo,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/5/307 46, 1407 â 1427 ( 2001 ).
dc.identifier.citedreferenceE. Poon and F. Verhaegen, â Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1895796 32, 1696 â 1711 ( 2005 ).
dc.identifier.citedreferenceJ. Sempau, A. Sanchezâ Reyes, and F. Salvat, â H. O. ben Tahar, S. B. Jiang, and J. M. Fernandezâ Varea, â Monte Carlo simulation of electron beams from an accelerator head using PENELOPE,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/4/318 46, 1163 â 1186 ( 2001 ).
dc.identifier.citedreferenceO. Chibani and X. A. Li, â Monte Carlo dose calculations in homogeneous media and at interfaces: A comparison between GEPTS, EGSnrc, MCNP, and measurements,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1473134 29, 835 â 847 ( 2002 ).
dc.identifier.citedreferenceO. Chibani and C. M. Ma, â Electron depth dose distributions in water, iron and lead: The GEPTS system,â Nucl. Instrum. Methods Phys. Res. B NIMBEU --> 0168â 583X 10.1016/0168â 583X(95)00506â 4 101, 357 â 378 ( 1995 ).
dc.identifier.citedreferenceW. van der Zee, A. Hogenbirk, and S. C. van der Marck, â ORANGE: A Monte Carlo dose engine for radiotherapy,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/4/005 50, 625 â 641 ( 2005 ).
dc.identifier.citedreferenceD. W. O. Rogers and R. Mohan, â Questions for comparisons of clinical Monte Carlo codes,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 120 â 122.
dc.identifier.citedreferenceB. A. Faddegon and I. Blevis, â Electron spectra derived from depth dose distributions,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598919 27, 514 â 526 ( 2000 ).
dc.identifier.citedreferenceM. R. Bieda, J. A. Antolak, and K. R. Hogstrom, â The effect of scattering foil parameters on electronâ beam Monte Carlo calculations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1420387 28, 2527 â 2534 ( 2001 ).
dc.identifier.citedreferenceD. Sheikhâ Bagheri and D. W. O. Rogers, â Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1446109 29, 379 â 390 ( 2002 ).
dc.identifier.citedreferenceA. Tzedakis, J. E. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis, â Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1668551 31, 907 â 913 ( 2004 ).
dc.identifier.citedreferenceI. J. Chetty, P. M. Charland, N. Tyagi, D. L. McShan, B. Fraass, and A. F. Bielajew, â Experimental validation of the DPM Monte Carlo code for photon beam dose calculations in inhomogeneous media,â Med. Phys. 29, 1351 (abstract) ( 2002 ). 0094‐2405 -->
dc.identifier.citedreferenceB. Libby, J. Siebers, and R. Mohan, â Validation of Monte Carlo generated phaseâ space descriptions of medical linear accelerators,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598643 26, 1476 â 1483 ( 1999 ).
dc.identifier.citedreferenceC. Bramoulle, F. Husson, and J. P. Manens, â Monte Carlo ( PENELOPE code) study of the xâ ray beams from SL Linacs (Elekta),â Phys. Med. 16, 107 â 115 ( 2000 ). 1120‐1797 -->
dc.identifier.citedreferenceE. L. Chaney, T. J. Cullip, and T. A. Gabriel, â A Monte Carlo study of accelerator head scatter,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597194 21, 1383 â 1390 ( 1994 ).
dc.identifier.citedreferenceG. X. Ding, â Energy spectra, angular spread, fluence profiles and dose distributions of 6 and 18 MV photon beams: Results of Monte Carlo simulations for a Varian 2100EX accelerator,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/7/303 47, 1025 â 1046 ( 2002 ).
dc.identifier.citedreferenceR. A. C. Siochi, â Requirements for manufacturer supplied data for Monte Carlo simulation,â in Proceedings of the 15th International Conference on the Applications of Accelerators in Research and Industry ( The American Institute of Physics, Melville, 1999 ), pp. 1060 â 1065.
dc.identifier.citedreferenceG. G. Zhang, D. W. O. Rogers, J. E. Cygler, and T. R. Mackie, â Monte Carlo investigation of electron beam output factors versus size of square cutout,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598582 26, 743 â 750 ( 1999 ).
dc.identifier.citedreferenceJ. A. Antolak, M. R. Bieda, and K. R. Hogstrom, â Using Monte Carlo methods to commission electron beams: A feasibility study,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1469626 29, 771 â 786 ( 2002 ).
dc.identifier.citedreferenceB. Faddegon, E. Schreiber, and X. Ding, â Monte Carlo simulation of large electron fields,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/001 50, 741 â 753 ( 2005 ).
dc.identifier.citedreferenceE. C. Schreiber and B. A. Faddegon, â Sensitivity of largeâ field electron beams to variations in a Monte Carlo accelerator model,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/003 50, 769 â 778 ( 2005 ).
dc.identifier.citedreferenceC. â M. Ma, B. A. Faddegon, D. W. O. Rogers, and T. R. Mackie, â Accurate characterization of Monte Carlo calculated electron beams for radiotherapy,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597908 24, 401 â 416 ( 1997 ).
dc.identifier.citedreferenceC. â M. Ma, E. Mok, A. Kapur, T. Pawlicki, D. Findley, S. Brain, K. Forster, and A. L. Boyer, â Clinical implementation of a Monte Carlo treatment planning system,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598729 26, 2133 â 2143 ( 1999 ).
dc.identifier.citedreferenceC. â M. Ma and D. W. O. Rogers, â BEAM Characterization: A Multipleâ Source Model,â NRC Report PIRSâ 0509(C), 1995.
dc.identifier.citedreferenceC. â M. Ma, â Characterization of computer simulated radiotherapy beams for Monteâ Carlo treatment planning,â Radiat. Phys. Chem. RPCHDM --> 0969â 806X 10.1016/S0969â 806X(98)00113â 3 53, 329 â 344 ( 1998 ).
dc.identifier.citedreferenceJ. Deng, S. B. Jiang, A. Kapur, J. Li, T. Pawlicki, and C. M. Ma, â Photon beam characterization and modelling for Monte Carlo treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/2/311 45, 411 â 427 ( 2000 ).
dc.identifier.citedreferenceB. Faddegon, J. Balogh, R. Mackenzie, and D. Scora, â Clinical considerations of Monte Carlo for electron radiotherapy treatment planning,â Radiat. Phys. Chem. RPCHDM --> 0969â 806X 10.1016/S0969â 806X(98)00103â 0 53, 217 â 227 ( 1998 ).
dc.identifier.citedreferenceM. K. Fix, H. Keller, P. Ruegsegger, and E. J. Born, â Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1318220 27, 2739 â 2747 ( 2000 ).
dc.identifier.citedreferenceS. B. Jiang, A. Kapur, and C. M. Ma, â Electron beam modeling and commissioning for Monte Carlo treatment planning,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598883 27, 180 â 191 ( 2000 ).
dc.identifier.citedreferenceS. B. Jiang, J. Deng, J. Li, P. Pawlicki, A. Boyer, and C. â M. Ma, â Modeling and commissioning of clinical photon beams for Monte Carlo treatment planning,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 434 â 436.
dc.identifier.citedreferenceJ. Deng, S. B. Jiang, P. Pawlicki, J. Li, and C. â M. Ma, â Electron beam commissioning for Monte Carlo dose calculation,â in Proceedings of the 13th ICCR, edited by T. Bortfeld and W. Schlegel ( Springerâ Verlag, Heidelberg, 2000 ), pp. 431 â 433.
dc.identifier.citedreferenceJ. S. Li et al., â Source modeling and beam commissioning for Siemens photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1478559 29, 1230 (abstract) ( 2002 ).
dc.identifier.citedreferenceJ. Yang, J. S. Li, L. Qin, W. Xiong, and C. M. Ma, â Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/49/12/013 49, 2657 â 2673 ( 2004 ).
dc.identifier.citedreferenceJ. Deng, T. Guerrero, C. M. Ma, and R. Nath, â Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/49/9/007 49, 1689 â 1704 ( 2004 ).
dc.identifier.citedreferenceJ. Deng, S. B. Jiang, T. Pawlicki, J. Li, and C. M. Ma, â Derivation of electron and photon energy spectra from electron beam central axis depth dose curves,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/5/308 46, 1429 â 1449 ( 2001 ).
dc.identifier.citedreferenceJ. J. Janssen, E. W. Korevaar, L. J. van Battum, P. R. Storchi, and H. Huizenga, â A model to determine the initial phase space of a clinical electron beam from measured beam data,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/2/301 46, 269 â 286 ( 2001 ).
dc.identifier.citedreferenceS. Siljamaki, L. Tillikainen, H. Helminen, and J. Pyyry, â Determining parameters for a multipleâ source model of a linear accelerator using optimization techniques,â Med. Phys. 32, 2113 (abstract) ( 2005 ). 0094‐2405 -->
dc.identifier.citedreferenceW. Ulmer, J. Pyyry, and W. Kaissl, â A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations,â Phys. Med. Biol. 50, 1767 â 1790 ( 2005 ).
dc.identifier.citedreferenceK. Aljarrah, G. C. Sharp, T. Neicu, and S. B. Jiang, â Determination of the initial beam parameters in Monte Carlo linac simulation,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2168433 33, 850 â 858 ( 2006 ).
dc.identifier.citedreferenceA. Ahnesjo and P. Andreo, â Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/34/10/008 34, 1451 â 1464 ( 1989 ).
dc.identifier.citedreferenceA. Ahnesjo and A. Trepp, â Acquisition of the effective lateral energy fluence distribution for photon beam dose calculations by convolution models,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/36/7/006 36, 973 â 985 ( 1991 ).
dc.identifier.citedreferenceA. Ahnesjo, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, â Beam modeling and verification of a photon beam multisource model,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1898485 32, 1722 â 1737 ( 2005 ).
dc.identifier.citedreferenceA. Catala, P. Francois, J. Bonnet, and C. Scouarnec, â Reconstruction of 12 MV bremsstrahlung spectra from measured transmission data by direct resolution of the numeric system A F = T,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597523 22, 3 â 10 ( 1995 ).
dc.identifier.citedreferenceP. M. Charland, I. J. Chetty, L. D. Paniak, B. P. Bednarz, and B. A. Fraass, â Enhanced spectral discrimination through the exploitation of interface effects in photon dose data,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1637731 31, 264 â 276 ( 2004 ).
dc.identifier.citedreferenceE. Heath and J. Seuntjens, â Development and validation of a BEAMnrc component module for accurate Monte Carlo modelling of the Varian dynamic millennium multileaf collimator,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/24/004 48, 4045 â 4063 ( 2003 ).
dc.identifier.citedreferenceH. H. Liu, F. Verhaegen, and L. Dong, â A method of simulating dynamic multileaf collimators using Monte Carlo techniques for intensityâ modulated radiation therapy,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/9/302 46, 2283 â 2298 ( 2001 ).
dc.identifier.citedreferenceN. Tyagi, J. M. Moran, D. W. Litzenberg, A. F. Bielajew, B. A. Fraass, and I. J. Chetty, â Experimental verification of a Monte Carloâ based MLC simulation model for IMRT dose calculation,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2428405 34, 651 â 663 ( 2007 ).
dc.identifier.citedreferenceT. C. Zhu et al., â Output ratios in air: Report of the AAPM Task Group No. 74,â Med. Phys. (submitted). 0094‐2405 -->
dc.identifier.citedreferenceT. C. Zhu and B. E. Bjarngard, â Head scatter offâ axis for megavoltage x rays,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1556609 30, 533 â 543 ( 2003 ).
dc.identifier.citedreferenceH. H. Liu, T. R. Mackie, and E. C. McCullough, â A dual source photon beam model used in convolution/superposition dose calculations for clinical megavoltage xâ ray beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598110 24, 1960 â 1974 ( 1997 ).
dc.identifier.citedreferenceM. B. Sharpe, D. A. Jaffray, J. J. Battista, and P. Munro, â Extrafocal radiation: A unified approach to the prediction of beam penumbra and output factors for megavoltage xâ ray beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.597648 22, 2065 â 2074 ( 1995 ).
dc.identifier.citedreferenceH. H. Liu, T. R. Mackie, and E. C. McCullough, â Calculating output factors for photon beam radiotherapy using a convolution/superposition method based on a dual source photon beam model,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598111 24, 1975 â 1985 ( 1997 ).
dc.identifier.citedreferenceM. R. Arnfield, J. V. Siebers, J. O. Kim, Q. Wu, P. J. Keall, and R. Mohan, â A method for determining multileaf collimator transmission and scatter for dynamic intensity modulated radiotherapy,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1312190 27, 2231 â 2241 ( 2000 ).
dc.identifier.citedreferenceH. H. Liu, T. R. Mackie, and E. C. McCullough, â Modeling photon output caused by backscattered radiation into the monitor chamber from collimator jaws using a Monte Carlo technique,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598936 27, 737 â 744 ( 2000 ).
dc.identifier.citedreferenceS. B. Jiang, A. L. Boyer, and C. M. Ma, â Modeling the extrafocal radiation and monitor chamber backscatter for photon beam dose calculation,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1333747 28, 55 â 66 ( 2001 ).
dc.identifier.citedreferenceG. X. Ding, â Using Monte Carlo simulations to commission photon beam output factorsâ A feasibility study,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/23/005 48, 3865 â 3874 ( 2003 ).
dc.identifier.citedreferenceB. Parker, A. S. Shiu, and H. H. Liu, â Smallâ field dosimetry with multiple detectors and Monte Carlo calculations,â Med. Phys. 29, 1372 (abstract) ( 2002 ). 0094‐2405 -->
dc.identifier.citedreferenceG. X. Ding, â Dose discrepancies between Monte Carlo calculations and measurements in the buildup region for a highâ energy photon beam,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1514237 29, 2459 â 2463 ( 2002 ).
dc.identifier.citedreferenceG. X. Ding, C. Duzenli, and N. I. Kalach, â Are neutrons responsible for the dose discrepancies between Monte Carlo calculations and measurements in the buildâ up region for a highâ energy photon beam? â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/17/313 47, 3251 â 3261 ( 2002 ).
dc.identifier.citedreferenceW. Abdelâ Rahman, J. P. Seuntjens, F. Verhaegen, F. Deblois, and E. B. Podgorsak, â Validation of Monte Carlo calculated surface doses for megavoltage photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1829401 32, 286 â 298 ( 2005 ).
dc.identifier.citedreferenceI. Kawrakow, â Efficient photon beam treatment head simulations,â Radiother. Oncol. 81, 82 (abstract) ( 2006 ). 0167‐8140 -->
dc.identifier.citedreferenceD. Sheikhâ Bagheri, D. W. O. Rogers, C. K. Ross, and J. P. Seuntjens, â Comparison of measured and Monte Carlo calculated dose distributions from the NRC linac,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1445413 27, 2256 â 2266 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â On the effective point of measurement in megavoltage photon beams,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2201147 33, 1829 â 1839 ( 2006 ).
dc.identifier.citedreferenceO. Chibani and C. M. Ma, â On the discrepancies between Monte Carlo dose calculations and measurements for the 18 MV varian photon beam,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2712414 34, 1206 â 1216 ( 2007 ).
dc.identifier.citedreferenceW. Feller, An Introduction to Probability Theory and Its Applications, 3rd ed. ( Wiley, New York, 1967 ), Vol. I.
dc.identifier.citedreferenceB. R. B. Walters, I. Kawrakow, and D. W. O. Rogers, â History by history statistical estimators in the BEAM code system,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1517611 29, 2745 â 2752 ( 2002 ).
dc.identifier.citedreferenceJ. Sempau and A. F. Bielajew, â Towards the elimination of Monte Carlo statistical fluctuation from dose volume histograms for radiotherapy treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/1/310 45, 131 â 157 ( 2000 ).
dc.identifier.citedreferenceP. J. Keall, J. V. Siebers, R. Jeraj, and R. Mohan, â The effect of dose calculation uncertainty on the evaluation of radiotherapy plans,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598916 27, 478 â 484 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â The effect of Monte Carlo statistical uncertainties on the evaluation of dose distributions in radiation treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/49/8/012 49, 1549 â 1556 ( 2004 ).
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, M. L. Kessler, B. A. Fraass, R. K. Ten Haken, F. M. Kong, and D. L. McShan, â Reporting and analyzing statistical uncertainties in Monte Carloâ based treatment planning,â Int. J. Radiat. Oncol. Biol. Phys. 65, 1249 â 1259 ( 2006 ). 0360‐3016 -->
dc.identifier.citedreferenceJ. V. Siebers, P. J. Keall, and I. Kawrakow, in The Modern Technology of Radiation Oncology, edited by J. Van Dyke ( Medical Physics, Madison, WI, 2005 ), Vol. 2, pp. 91 â 130.
dc.identifier.citedreferenceF. M. Buffa and A. E. Nahum, â Monte Carlo dose calculations and radiobiological modelling: Analysis of the effect of the statistical noise of the dose distribution on the probability of tumour control,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/10/318 45, 3009 â 3023 ( 2000 ).
dc.identifier.citedreferenceS. B. Jiang, T. Pawlicki, and C. M. Ma, â Removing the effect of statistical uncertainty on doseâ volume histograms from Monte Carlo dose calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/8/307 45, 2151 â 2161 ( 2000 ).
dc.identifier.citedreferenceJ. O. Deasy, â Denoising of electron beam Monte Carlo dose distributions using digital filtering techniques,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/7/305 45, 1765 â 1779 ( 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â On the deâ noising of Monte Carlo calculated dose distributions,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/17/304 47, 3087 â 3103 ( 2002 ).
dc.identifier.citedreferenceJ. O. Deasy, M. V. Wickerhauser, and M. Picard, â Accelerating Monte Carlo simulations of radiation therapy dose distributions using wavelet threshold deâ noising,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1508112 29, 2366 â 2373 ( 2002 ).
dc.identifier.citedreferenceS. J. Pollack and A. F. Bielajew, â Novel algorithms for smoothing global Monte Carlo noise,â in Proceedings of the Current Topics in Monte Carlo Treatment Planning: Advanced Workshop, Montreal, CN, edited by F. Verhaegen and J. Seuntjens, 2004 (unpublished).
dc.identifier.citedreferenceB. Miao, R. Jeraj, S. Bao, and T. R. Mackie, â Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/17/303 48, 2767 â 2781 ( 2003 ).
dc.identifier.citedreferenceM. Fippel and F. Nusslin, â Smoothing Monte Carlo calculated dose distributions by iterative reduction of noise,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/48/10/304 48, 1289 â 1304 ( 2003 ).
dc.identifier.citedreferenceI. El Naqa et al., â A comparison of Monte Carlo dose calculation denoising techniques,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/014 50, 909 â 922 ( 2005 ).
dc.identifier.citedreferenceC. M. Ma, R. A. Price, Jr., J. S. Li, L. Chen, L. Wang, E. Fourkal, L. Qin, and J. Yang, â Monitor unit calculation for Monte Carlo treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/49/9/006 49, 1671 â 1687 ( 2004 ).
dc.identifier.citedreferenceF. C. du Plessis, C. A. Willemse, M. G. Lotter, and L. Goedhals, â The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598297 25, 1195 â 1201 ( 1998 ).
dc.identifier.citedreferenceC. â M. Ma and D. W. O. Rogers, â BEAMDP Users Manual,â NRC Report PIRSâ 0509(D), 1995.
dc.identifier.citedreferenceJ. V. Siebers, P. J. Keall, A. E. Nahum, and R. Mohan, â Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/4/313 45, 983 â 995 ( 2000 ).
dc.identifier.citedreferenceICRUâ Report No. 46: Photon, electron, proton and neutron interaction data for body tissues,â in International Commission on Radiation Units and Measurements, 1992.
dc.identifier.citedreferenceF. Verhaegen and S. Devic, â Sensitivity study for CT image use in Monte Carlo treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/016 50, 937 â 946 ( 2005 ).
dc.identifier.citedreferenceM. Bazalova, L. Beaulieu, S. Palefsky, and F. Verhaegen, â Correction of CT artifacts and its influence on Monte Carlo dose calculations,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2736777 34, 2119 â 2132 ( 2007 ).
dc.identifier.citedreferenceC. Reft et al., â Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1565113 30, 1162 â 1182 ( 2003 ).
dc.identifier.citedreferenceN. Dogan, J. V. Siebers, and P. J. Keall, â Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/51/19/015 51, 4967 â 4980 ( 2006 ).
dc.identifier.citedreferenceH. H. Liu, â D m rather than D w should be used in Monte Carlo treatment planning. For the proposition,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1473137 29, 922 â 923 ( 2002 ).
dc.identifier.citedreferenceM. Goitein, â The cell’sâ eye view: assessing dose in four dimensions,â Int. J. Radiat. Oncol. Biol. Phys. 62, 951 â 953 ( 2005 ). 0360‐3016 -->
dc.identifier.citedreferenceM. Fippel and F. Nusslin, â Comments on â Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculationsâ ,â Phys. Med. Biol. 45, L17 â L19 ( 2000 ). 0031‐9155 -->
dc.identifier.citedreferenceJ. Siebers, B. Libby, and R. Mohan, â Trust, but verify: Comparison of MCNP and BEAM Monte Carlo codes for generation of phase space distributions for a Varian 2100C,â Med. Phys. 25, A143 (abstract) ( 1998 ). 0094‐2405 -->
dc.identifier.citedreferenceR. Mohan, M. Arnfield, S. Tong, Q. Wu, and J. Siebers, â The impact of fluctuations in intensity patterns on the number of monitor units and the quality and accuracy of intensity modulated radiotherapy,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.599000 27, 1226 â 1237 ( 2000 ).
dc.identifier.citedreferenceJ. O. Kim, J. V. Siebers, P. J. Keall, M. R. Arnfield, and R. Mohan, â A Monte Carlo study of radiation transport through multileaf collimators,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1420734 28, 2497 â 2506 ( 2001 ).
dc.identifier.citedreferenceP. J. Keall, J. V. Siebers, M. Arnfield, J. O. Kim, and R. Mohan, â Monte Carlo dose calculations for dynamic IMRT treatments,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/46/4/302 46, 929 â 941 ( 2001 ).
dc.identifier.citedreferenceL. Wang, E. Yorke, and C. S. Chui, â Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and lung treatments,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1517291 29, 2705 â 2717 ( 2002 ).
dc.identifier.citedreferenceC. â M. Ma et al., â Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/9/303 45, 2483 â 2495 ( 2000 ).
dc.identifier.citedreferenceT. Pawlicki and C. M. Ma, â Monte Carlo simulation for MLCâ based intensityâ modulated radiotherapy,â Med. Dosim. 26, 157 â 168 ( 2001 ). 0958‐3947 -->
dc.identifier.citedreferenceP. Francescon, S. Cora, and P. Chiovati, â Dose verification of an IMRT treatment planning system with the BEAM EGS4 â based Monte Carlo code,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1538236 30, 144 â 157 ( 2003 ).
dc.identifier.citedreferenceM. Rincon et al., â Monte Carlo conformal treatment planning as an independent assessment,â in Advanced Monte Carlo for Radiation Physics: Proceedings of the Monte Carlo 2000 Meeting, Lisbon, edited by A. Kling et al. ( Springerâ Verlag, Berlin, 2001 ), pp. 565 â 570.
dc.identifier.citedreferenceR. Jeraj, P. J. Keall, and J. V. Siebers, â The effect of dose calculation accuracy on inverse treatment planning,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/47/3/303 47, 391 â 407 ( 2002 ).
dc.identifier.citedreferenceN. Reynaert et al., â The importance of accurate linear accelerator head modelling for IMRT Monte Carlo calculations,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/5/008 50, 831 â 846 ( 2005 ).
dc.identifier.citedreferenceW. Laub, M. Alber, M. Birkner, and F. Nusslin, â Monte Carlo dose computation for IMRT optimization,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/45/7/303 45, 1741 â 1754 ( 2000 ).
dc.identifier.citedreferenceN. Dogan, J. V. Siebers, P. J. Keall, F. Lerma, Y. Wu, M. Fatyga, J. F. Williamson, and R. K. Schmidtâ Ullrich, â Improving IMRT dose accuracy via deliverable Monte Carlo optimization for the treatment of head and neck cancers,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2357835 33, 4033 â 4055 ( 2006 ).
dc.identifier.citedreferenceJ. V. Siebers, M. Lauterbach, S. Tong, Q. Wu, and R. Mohan, â Reducing dose calculation time for accurate iterative IMRT planning,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1446112 29, 231 â 237 ( 2002 ).
dc.identifier.citedreferenceA. M. Bergman, K. Bush, M. P. Milette, I. A. Popescu, K. Otto, and C. Duzenli, â Direct aperture optimization for IMRT using Monte Carlo generated beamlets,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2336509 33, 3666 â 3679 ( 2006 ).
dc.identifier.citedreferenceB. De Smedt, B. Vanderstraeten, N. Reynaert, W. De Neve, and H. Thierens, â Investigation of geometrical and scoring grid resolution for Monte Carlo dose calculations for IMRT,â Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031â 9155/50/17/006 50, 4005 â 4019 ( 2005 ).
dc.identifier.citedreferenceJ. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, â A Fourier analysis of the dose grid resolution required for accurate IMRT fluence map optimization,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1843354 32, 380 â 388 ( 2005 ).
dc.identifier.citedreferenceD. V. Rao, S. M. Seltzer, and P. M. Bergstrom, Jr., â Compton scattering crossâ sections for individual subshells for a few elements of biological interest in the energy region 5 keVâ 10 MeV,â Radiat. Phys. Chem. 70, 479 â 489 ( 2004 ). 0969â 806X
dc.identifier.citedreferenceS. M. Seltzer, in Monte Carlo Transport of Electrons and Photons, edited by W. R. Nelson, T. M. Jenkins, A. Rindi, A. E. Nahum, and D. W. O. Rogers ( Plenum, New York, 1988 ), pp. 81 â 114.
dc.identifier.citedreferenceB. A. Fraass, J. Smathers, and J. Deye, â Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1626990 30, 3206 â 3216 ( 2003 ).
dc.identifier.citedreferenceE. R. Epp, A. L. Boyer, and K. P. Doppke, â Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV xâ ray beams,â Int. J. Radiat. Oncol. Biol. Phys. 2, 613 â 619 ( 1977 ). 0360‐3016 -->
dc.identifier.citedreferenceM. A. Hunt, G. E. Desobry, B. Fowble, and L. R. Coia, â Effect of lowâ density lateral interfaces on softâ tissue doses,â Int. J. Radiat. Oncol. Biol. Phys. 37, 475 â 482 ( 1997 ). 0360‐3016 -->
dc.identifier.citedreferenceE. E. Klein, L. M. Chin, R. K. Rice, and B. J. Mijnheer, â The influence of air cavities on interface doses for photon beams,â Int. J. Radiat. Oncol. Biol. Phys. 27, 419 â 427 ( 1993 ). 0360‐3016 -->
dc.identifier.citedreferenceT. R. Mackie, J. W. Scrimger, and J. J. Battista, â A convolution method of calculating dose for 15â MV x rays,â Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595774 12, 188 â 196 ( 1985 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.