Show simple item record

Geomagnetically induced currents around the world during the 17 March 2015 storm

dc.contributor.authorCarter, B. A.
dc.contributor.authorYizengaw, E.
dc.contributor.authorPradipta, R.
dc.contributor.authorWeygand, J. M.
dc.contributor.authorPiersanti, M.
dc.contributor.authorPulkkinen, A.
dc.contributor.authorMoldwin, M. B.
dc.contributor.authorNorman, R.
dc.contributor.authorZhang, K.
dc.date.accessioned2017-01-06T20:48:28Z
dc.date.available2017-12-01T21:54:11Zen
dc.date.issued2016-10
dc.identifier.citationCarter, B. A.; Yizengaw, E.; Pradipta, R.; Weygand, J. M.; Piersanti, M.; Pulkkinen, A.; Moldwin, M. B.; Norman, R.; Zhang, K. (2016). "Geomagnetically induced currents around the world during the 17 March 2015 storm." Journal of Geophysical Research: Space Physics 121(10): 10,496-10,507.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134957
dc.description.abstractGeomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patrick’s Day storm. While significant GIC activity in the high‐latitude regions due to storm time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and Southeast Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in Southeast Asia and during the main phase of the storm ∼10 h later in South America. The SSC caused magnetic field variations at the equator in Southeast Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined, and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ ∼10 h into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solar wind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.Key PointsGICs measured around the world during the 17 March 2015 storm are examinedEnhanced GIC activity near the equator is observed both at the start and during the storm in different longitude sectorsSolar wind data indicate that sudden changes in the solar wind dynamic pressure caused the enhanced equatorial GICs
dc.publisherAGU
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeomagnetically induced currents
dc.subject.othersudden impulses
dc.subject.othergeomagnetic storms
dc.subject.otherequatorial electrojet
dc.titleGeomagnetically induced currents around the world during the 17 March 2015 storm
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134957/1/jgra53031_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134957/2/jgra53031.pdf
dc.identifier.doi10.1002/2016JA023344
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRussell, C. T., M. Ginskey, and S. M. Petrinec ( 1994 ), Sudden impulses at low‐latitude stations: Steady state response for northward interplanetary magnetic field, J. Geophys. Res., 99 ( A1 ), 253 – 261, doi: 10.1029/93JA02288.
dc.identifier.citedreferenceSchulte in den Bäumen, H., D. Moran, M. Lenzen, I. Cairns, and A. Steenge ( 2014 ), How severe space weather can disrupt global supply chains, Nat. Hazards Earth Syst. Sci., 14, 2749 – 2759, doi: 10.5194/nhess‐14‐2749‐2014.
dc.identifier.citedreferenceMoldwin, M. B., and J. S. Tsu ( 2016 ), Stormtime Equatorial Electrojet Ground Induced Currents: Increasing Power Grid Space Weather Impacts at Equatorial Latitudes, Chapter 3, AGU, Washington, D. C.
dc.identifier.citedreferenceNgwira, C. M., A. Pulkkinen, F. D. Wilder, and G. Crowley ( 2013 ), Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications, Space Weather, 11, 121 – 131, doi: 10.1002/swe.20021.
dc.identifier.citedreferencePiersanti, M., and U. Villante ( 2016 ), J. Geophys. Res. Space Physics, 121, 6674 – 6691, doi: 10.1002/2015JA021666.
dc.identifier.citedreferencePirjola, R. ( 2000 ), Geomagnetically induced currents during magnetic storms, IEEE Trans. Plasma Sci., 28 ( 6 ), 1867 – 1873, doi: 10.1109/27.902215.
dc.identifier.citedreferencePulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola ( 2005 ), Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high‐voltage power transmission system, Space Weather, 3, S08C03, doi: 10.1029/2004SW000123.
dc.identifier.citedreferencePulkkinen, A., E. Bernabeu, J. Eichner, C. Beggan, and A. W. P. Thomson ( 2012 ), Generation of 100‐year geomagnetically induced current scenarios, Space Weather, 10, S04003, doi: 10.1029/2011SW000750.
dc.identifier.citedreferenceRamsingh, S. Sripathi, S. Sreekumar, S. Banola, K. Emperumal, P. Tiwari, and B. S. Kumar ( 2015 ), Low‐latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: Results from a chain of ground‐based observations over Indian sector, J. Geophys. Res. Space Physics, 120, 10,864 – 10,882, doi: 10.1002/2015JA021509.
dc.identifier.citedreferenceRussell, C. T., P. J. Chi, D. J. Dearborn, Y. S. Ge, B. Kuo‐Tiong, J. D. Means, D. R. Pierce, K. M. Rowe, and R. C. Snare ( 2009 ), THEMIS ground‐based magnetometers,pp. 389 – 412, Springer, New York, doi: 10.1007/978‐0‐387‐89820‐9_17.
dc.identifier.citedreferenceSchrijver, C. J., R. Dobbins, W. Murtagh, and S. M. Petrinec ( 2014 ), Assessing the impact of space weather on the electric power grid based on insurance claims for industrial electrical equipment, Space Weather, 12, 487 – 498, doi: 10.1002/2014SW001066.
dc.identifier.citedreferenceShinbori, A., Y. Tsuji, T. Kikuchi, T. Araki, and S. Watari ( 2009 ), Magnetic latitude and local time dependence of the amplitude of geomagnetic sudden commencements, J. Geophys. Res., 114, A04217, doi: 10.1029/2008JA013871.
dc.identifier.citedreferenceTrivedi, N. B., et al. ( 2007 ), Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil: A case study, Space Weather, 5, S04004, doi: 10.1029/2006SW000282.
dc.identifier.citedreferenceTsurutani, B. T., et al. ( 2008 ), Prompt Penetration Electric Fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003, J. Geophys. Res., 113, A05311, doi: 10.1029/2007JA012879.
dc.identifier.citedreferenceTsurutani, B. T., R. Hajra, E. Echer, and J. W. Gjerloev ( 2015 ), Extremely intense (SML ≤−2500 nT) substorms: Isolated events that are externally triggered?, Ann. Geophys., 33 ( 5 ), 519 – 524, doi: 10.5194/angeo‐33‐519‐2015.
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2005 ), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi: 10.1029/2004JA010798.
dc.identifier.citedreferenceTulasi Ram, S., et al. ( 2016 ), Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick’s day storm on 17 March 2015, J. Geophys. Res. Space Physics, 121, 538 – 548, doi: 10.1002/2015JA021932.
dc.identifier.citedreferenceViljanen, A. ( 1998 ), Relation of geomagnetically induced currents and local geomagnetic field variations, IEEE Trans. Power Delivery, 13 ( 4 ), 1285 – 1290.
dc.identifier.citedreferenceWatari, S., et al. ( 2009 ), Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan, Space Weather, 7, S03002, doi: 10.1029/2008SW000417.
dc.identifier.citedreferenceWeygand, J. M., O. Amm, A. Viljanen, V. Angelopoulos, D. Murr, M. J. Engebretson, H. Gleisner, and I. Mann ( 2011 ), Application and validation of the spherical elementary currents systems technique for deriving ionospheric equivalent currents with the North American and Greenland ground magnetometer arrays, J. Geophys. Res., 116, A03305, doi: 10.1029/2010JA016177.
dc.identifier.citedreferenceYizengaw, E., and M. B. Moldwin ( 2009 ), African Meridian B‐Field Education and Research (AMBER) array, Earth Moon Planets, 104 ( 1 ), 237 – 246, doi: 10.1007/s11038‐008‐9287‐2.
dc.identifier.citedreferenceYizengaw, E., E. Zesta, M. B. Moldwin, B. Damtie, A. Mebrahtu, C. E. Valladares, and R. F. Pfaff ( 2012 ), Longitudinal differences of ionospheric vertical density distribution and equatorial electrodynamics, J. Geophys. Res., 117, A07312, doi: 10.1029/2011JA017454.
dc.identifier.citedreferenceYizengaw, E., M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. Rabiu, C. F. Valladares, and R. Stoneback ( 2014 ), The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors, Ann. Geophys., 32 ( 3 ), 231 – 238, doi: 10.5194/angeo‐32‐231‐2014.
dc.identifier.citedreferenceZhang, J. J., C. Wang, T. R. Sun, C. M. Liu, and K. R. Wang ( 2015 ), GIC due to storm sudden commencement in low‐latitude high‐voltage power network in China: Observation and simulation, Space Weather, 13 ( 10 ), 643 – 655, doi: 10.1002/2015SW001263.
dc.identifier.citedreferenceZhang, J. J., C. Wang, T. R. Sun, and Y. D. Liu ( 2016 ), Risk assessment of the extreme interplanetary shock of 23 July 2012 on low‐latitude power networks, Space Weather, 14 ( 3 ), 259 – 270, doi: 10.1002/2015SW001347.
dc.identifier.citedreferenceZhong, J., W. Wang, X. Yue, A. G. Burns, X. Dou, and J. Lei ( 2016 ), Long‐duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm, J. Geophys. Res. Space Physics, 121, 4733 – 4747, doi: 10.1002/2016JA022469.
dc.identifier.citedreferenceZhou, Y.‐L., H. Lühr, C. Xiong, and R. F. Pfaff ( 2016 ), Ionospheric storm effects and equatorial plasma irregularities during the 17–18 March 2015 event, J. Geophys. Res. Space Physics, 121, 9146 – 9163, doi: 10.1002/2016JA023122.
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ), Equatorial spread F /plasma bubble irregularities under storm time disturbance electric fields, J. Atmos. Sol. Terr. Phys., 75‐76, 44 – 56.
dc.identifier.citedreferenceAmm, O., and A. Viljanen ( 1999 ), Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems, Earth Planets Space, 51, 431 – 440.
dc.identifier.citedreferenceAnderson, B. J., K. Takahashi, and B. A. Toth ( 2000 ), Sensing global Birkeland currents with iridium ® engineering magnetometer data, Geophys. Res. Lett., 27 ( 24 ), 4045 – 4048, doi: 10.1029/2000GL000094.
dc.identifier.citedreferenceAnderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki ( 2002 ), Estimating daytime vertical E × B drift velocities in the equatorial F ‐region using ground‐based magnetometer observations, Geophys. Res. Lett., 29 ( 12 ), 1596, doi: 10.1029/2001GL014562.
dc.identifier.citedreferenceAraki, T. ( 1977 ), Global structure of geomagnetic sudden commencements, Planet. Space Sci., 25, 373 – 384.
dc.identifier.citedreferenceAraki, T. ( 1994 ), A physical model of the geomagnetic sudden commencement, pp. 183 – 200, AGU, Washington, D. C., doi: 10.1029/GM081p0183.
dc.identifier.citedreferenceAraki, T., S. Tsunomura, and T. Kikuchi ( 2009 ), Local time variation of the amplitude of geomagnetic sudden commencements (SC) and SC‐associated polar cap potential, Earth Planets Space, 61, e13 – e16.
dc.identifier.citedreferenceAstafyeva, E., I. Zakharenkova, and M. Förster ( 2015 ), Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi‐instrumental overview, J. Geophys. Res. Space Physics, 120, 9023 – 9037, doi: 10.1002/2015JA021629.
dc.identifier.citedreferenceBaker, K. B., and S. Wing ( 1989 ), A new magnetic coordinate system for conjugate studies at high latitudes, J. Geophys. Res., 94 ( A7 ), 9139 – 9143, doi: 10.1029/JA094iA07p09139.
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80 ( 31 ), 4204 – 4214, doi: 10.1029/JA080i031p04204.
dc.identifier.citedreferenceCarter, B. A., E. Yizengaw, R. Pradipta, A. J. Halford, R. Norman, and K. Zhang ( 2015 ), Interplanetary shocks and the resulting geomagnetically induced currents at the equator, Geophys. Res. Lett., 42, 6554 – 6559, doi: 10.1002/2015GL065060.
dc.identifier.citedreferenceCarter, B. A., E. Yizengaw, R. Pradipta, J. M. Retterer, K. Groves, C. Valladares, R. Caton, C. Bridgwood, R. Norman, and K. Zhang ( 2016 ), Global equatorial plasma bubble occurrence during the 2015 St. Patrick’s Day storm, J. Geophys. Res. Space Physics, 121, 894 – 905, doi: 10.1002/2015JA022194.
dc.identifier.citedreferenceChi, P. J., et al. ( 2013 ), Sounding of the plasmasphere by Mid‐continent MAgnetoseismic Chain (McMAC) magnetometers, J. Geophys. Res. Space Physics, 118, 3077 – 3086, doi: 10.1002/jgra.50274.
dc.identifier.citedreferenceEngebretson, M. J., W. J. Hughes, J. L. Alford, E. Zesta, L. J. Cahill, R. L. Arnoldy, and G. D. Reeves ( 1995 ), Magnetometer array for cusp and cleft studies observations of the spatial extent of broadband ULF magnetic pulsations at cusp/cleft latitudes, J. Geophys. Res., 100 ( A10 ), 19,371 – 19,386, doi: 10.1029/95JA00768.
dc.identifier.citedreferenceFagundes, P. R., F. A. Cardoso, B. G. Fejer, K. Venkatesh, B. A. G. Ribeiro, and V. G. Pillat ( 2016 ), Positive and negative GPS‐TEC ionospheric storm effects during the extreme space weather event of March 2015 over the Brazilian sector, J. Geophys. Res. Space Physics, 121, 5613 – 5625, doi: 10.1002/2015JA022214.
dc.identifier.citedreferenceFejer, B. G., J. W. Jensen, and S.‐Y. Su ( 2008 ), Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts, Geophys. Res. Lett., 35, L20106, doi: 10.1029/2008GL035584.
dc.identifier.citedreferenceFiori, R. A. D., D. H. Boteler, and D. M. Gillies ( 2014 ), Assessment of GIC risk due to geomagnetic sudden commencements and identification of the current systems responsible, Space Weather, 12, 76 – 91, doi: 10.1002/2013SW000967.
dc.identifier.citedreferenceForbes, K. F., and O. C. St. Cyr ( 2008 ), Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids, Space Weather, 6, S10003, doi: 10.1029/2007SW000350.
dc.identifier.citedreferenceFujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, and M. Itonaga ( 2003a ), A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field‐aligned current associated with the preliminary impulse, J. Geophys. Res., 108 ( A12 ), 1416, doi: 10.1029/2002JA009407.
dc.identifier.citedreferenceFujita, S., T. Tanaka, T. Kikuchi, K. Fujimoto, and M. Itonaga ( 2003b ), A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse, J. Geophys. Res., 108 ( A12 ), 1417, doi: 10.1029/2002JA009763.
dc.identifier.citedreferenceGaunt, C. T. ( 2016 ), Why space weather is relevant to electrical power systems, Space Weather, 14 ( 1 ), 2 – 9, doi: 10.1002/2015SW001306.
dc.identifier.citedreferenceGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99, 5771 – 5792, doi: 10.1029/93JA02867.
dc.identifier.citedreferenceHuang, C.‐S., G. R. Wilson, M. R. Hairston, Y. Zhang, W. Wang, and J. Liu ( 2016 ), Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick’s Day magnetic storm, J. Geophys. Res. Space Physics, 121, 7961 – 7973, doi: 10.1002/2016JA023072.
dc.identifier.citedreferenceJoshi, L. M., S. Sripathi, and R. Singh ( 2016 ), Simulation of low‐latitude ionospheric response to 2015 St. Patrick’s Day super geomagnetic storm using ionosonde‐derived PRE vertical drifts over Indian region, J. Geophys. Res. Space Physics, 121, 2489 – 2502, doi: 10.1002/2015JA021512.
dc.identifier.citedreferenceKakad, B., P. Gurram, P. N. B. Tripura Sundari, and A. Bhattacharyya ( 2016 ), Structuring of intermediate scale equatorial spread F irregularities during intense geomagnetic storm of solar cycle 24, J. Geophys. Res. Space Physics, 121, 7001 – 7012, doi: 10.1002/2016JA022635.
dc.identifier.citedreferenceKamide, Y., and S.‐I. Akasofu ( 1983 ), Notes on the auroral electrojet indices, Rev. Geophys., 21 ( 7 ), 1647 – 1656, doi: 10.1029/RG021i007p01647.
dc.identifier.citedreferenceKappenman, J. G. ( 2003 ), Storm sudden commencement events and the associated geomagnetically induced current risks to ground‐based systems at low‐latitude and midlatitude locations, Space Weather, 1 ( 3 ), 1016, doi: 10.1029/2003SW000009.
dc.identifier.citedreferenceKappenman, J. G. ( 2005 ), An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun‐Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms, Space Weather, 3, S08C01, doi: 10.1029/2004SW000128.
dc.identifier.citedreferenceKikuchi, T., and K. K. Hashimoto ( 2016 ), Transmission of the electric fields to the low latitude ionosphere in the magnetosphere‐ionosphere current circuit, Geosci. Lett., 3 ( 1 ), 1 – 11, doi: 10.1186/s40562‐016‐0035‐6.
dc.identifier.citedreferenceKnipp, D. J. ( 2015 ), Synthesis of geomagnetically induced currents: Commentary and research, Space Weather, 13 ( 11 ), 727 – 729, doi: 10.1002/2015SW001317.
dc.identifier.citedreferenceLove, J. J., and A. Chulliat ( 2013 ), An international network of magnetic observatories, Eos Trans. AGU, 94 ( 42 ), 373 – 374, doi: 10.1002/2013EO420001.
dc.identifier.citedreferenceLove, J. J., P. Coïsson, and A. Pulkkinen ( 2016 ), Global statistical maps of extreme‐event magnetic observatory 1 min first differences in horizontal intensity, Geophys. Res. Lett., 43, 4126 – 4135, doi: 10.1002/2016GL068664.
dc.identifier.citedreferenceMann, I. R., et al. ( 2008 ), The upgraded CARISMA magnetometer array in the THEMIS era, Space Sci. Rev., 141 ( 1 ), 413 – 451, doi: 10.1007/s11214‐008‐9457‐6.
dc.identifier.citedreferenceMarshall, R. A., E. A. Smith, M. J. Francis, C. L. Waters, and M. D. Sciffer ( 2011 ), A preliminary risk assessment of the Australian region power network to space weather, Space Weather, 9, S10004, doi: 10.1029/2011SW000685.
dc.identifier.citedreferenceMarshall, R. A., M. Dalzell, C. L. Waters, P. Goldthorpe, and E. A. Smith ( 2012 ), Geomagnetically induced currents in the New Zealand power network, Space Weather, 10, S08003, doi: 10.1029/2012SW000806.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.