Show simple item record

Using machine learning to model dose–response relationships

dc.contributor.authorLinden, Ariel
dc.contributor.authorYarnold, Paul R
dc.contributor.authorNallamothu, Brahmajee K
dc.date.accessioned2017-01-06T20:48:36Z
dc.date.available2018-01-08T19:47:51Zen
dc.date.issued2016-12
dc.identifier.citationLinden, Ariel; Yarnold, Paul R; Nallamothu, Brahmajee K (2016). "Using machine learning to model dose–response relationships." Journal of Evaluation in Clinical Practice 22(6): 856-863.
dc.identifier.issn1356-1294
dc.identifier.issn1365-2753
dc.identifier.urihttps://hdl.handle.net/2027.42/134965
dc.description.abstractRationale, aims and objectivesEstablishing the relationship between various doses of an exposure and a response variable is integral to many studies in health care. Linear parametric models, widely used for estimating dose–response relationships, have several limitations. This paper employs the optimal discriminant analysis (ODA) machine‐learning algorithm to determine the degree to which exposure dose can be distinguished based on the distribution of the response variable. By framing the dose–response relationship as a classification problem, machine learning can provide the same functionality as conventional models, but can additionally make individual‐level predictions, which may be helpful in practical applications like establishing responsiveness to prescribed drug regimens.MethodUsing data from a study measuring the responses of blood flow in the forearm to the intra‐arterial administration of isoproterenol (separately for 9 black and 13 white men, and pooled), we compare the results estimated from a generalized estimating equations (GEE) model with those estimated using ODA.ResultsGeneralized estimating equations and ODA both identified many statistically significant dose–response relationships, separately by race and for pooled data. Post hoc comparisons between doses indicated ODA (based on exact P values) was consistently more conservative than GEE (based on estimated P values). Compared with ODA, GEE produced twice as many instances of paradoxical confounding (findings from analysis of pooled data that are inconsistent with findings from analyses stratified by race).ConclusionsGiven its unique advantages and greater analytic flexibility, maximum‐accuracy machine‐learning methods like ODA should be considered as the primary analytic approach in dose–response applications.
dc.publisherAPA Books
dc.publisherWiley Periodicals, Inc.
dc.subject.otherefficacy
dc.subject.othermachine learning
dc.subject.otherdose–response
dc.subject.otherdata mining
dc.subject.otheradherence
dc.titleUsing machine learning to model dose–response relationships
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134965/1/jep12573_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134965/2/jep12573.pdf
dc.identifier.doi10.1111/jep.12573
dc.identifier.sourceJournal of Evaluation in Clinical Practice
dc.identifier.citedreferenceNewson, R. B. ( 2010 ) Frequentist q‐values for multiple‐test procedures. The Stata Journal, 10, 568 – 584.
dc.identifier.citedreferenceEisenbeis, R. A. ( 1977 ) Pitfalls in the application of discriminant analysis in business, finance, and economics. The Journal of Finance, 32, 875 – 900.
dc.identifier.citedreferenceNishikawa, K., Kubota, Y. & Ooi, T. ( 1983 ) Classification of proteins into groups based on amino acid composition and other characters, II: grouping into four types. Journal of Biochemistry, 94, 997 – 1007.
dc.identifier.citedreferenceYarnold, P. R. ( 1992 ) Statistical analysis for single‐case designs. In Social Psychological Applications to Social Issues: Vol. 2. Methodological Issues in Applied Social Research (eds F. B. Bryant, L. Heath, E. Posavac, J. Edwards, S. Tindale, E. Henderson & Y. Suarez‐Balcazar ), pp. 177 – 197. New York: Plenum.
dc.identifier.citedreferenceLinden, A., & Yarnold, P.R. ( 2016 ) Using data mining techniques to characterize participation in observational studies. Journal of Evaluation in Clinical Practice, 22, 835 – 843.
dc.identifier.citedreferenceLinden, A., Adams, J. & Roberts, N. ( 2004 ) The generalizability of disease management program results: getting from here to there. Managed Care Interface, 17, 38 – 45.
dc.identifier.citedreferenceWitten, I. H., Frank, E. & Hall, M. A. ( 2011 ) Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. San Francisco: Morgan Kaufmann.
dc.identifier.citedreferenceLinden, A., Adams, J. & Roberts, N. ( 2005 ) Evaluating disease management program effectiveness: an introduction to the bootstrap technique. Disease Management and Health Outcomes, 13, 159 – 167.
dc.identifier.citedreferenceHuber, P. J. ( 1967 ) The behavior of maximum likelihood estimates under nonstandard conditions. In Vol. 1 of Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 221 – 233. Berkeley: University of California Press.
dc.identifier.citedreferenceWhite, H. L. Jr. ( 1980 ) A heteroskedasticity‐consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48, 817 – 838.
dc.identifier.citedreferenceSidak, Z. ( 1967 ) Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association, 62, 626 – 633.
dc.identifier.citedreferenceYarnold, P. R. ( 1996 ) Characterizing and circumventing Simpson’s paradox for ordered bivariate data. Educational and Psychological Measurement, 56, 430 – 442.
dc.identifier.citedreferenceLinden, A. ( 2006 ) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. Journal of Evaluation in Clinical Practice, 12, 132 – 139.
dc.identifier.citedreferenceIavindrasana, J., Cohen, G., Depeursinge, A., Müller, H., Meyer, R. & Geissbuhler, A. ( 2009 ) Clinical data mining: a review. In IMIA Yearbook of Medical Informatics. (eds A. Geissbuhler, C. Kulikowski ), 48, Suppl 1, pp. 121 – 133.
dc.identifier.citedreferenceCouto, J., Webster, L., Romney, M., Leider, H. & Linden, A. ( 2009 ) Using an algorithm applied to urine drug screening to assess adherence to an OxyContin regimen. Journal of Opioid Management, 5, 359 – 364.
dc.identifier.citedreferenceCouto, J., Webster, L., Romney, M., Leider, H. & Linden, A. ( 2011 ) Use of an algorithm applied to urine drug screening to assess adherence to a hydrocodone regimen. Journal of Clinical Pharmacology & Therapeutics, 36, 200 – 207.
dc.identifier.citedreferenceLinden, A. & Adams, J. L. ( 2010a ) Using propensity score‐based weighting in the evaluation of health management programme effectiveness. Journal of Evaluation in Clinical Practice, 16, 175 – 179.
dc.identifier.citedreferenceLinden, A. & Adams, J. L. ( 2010b ) Evaluating health management programmes over time. Application of propensity score‐based weighting to longitudinal data. Journal of Evaluation in Clinical Practice, 16, 180 – 185.
dc.identifier.citedreferenceLinden, A. & Adams, J. L. ( 2011 ) Applying a propensity‐score based weighting model to interrupted time series data: improving causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 17, 1231 – 1238.
dc.identifier.citedreferenceLinden, A. & Adams, J. L. ( 2012 ) Combining the regression‐discontinuity design and propensity‐score based weighting to improve causal inference in program evaluation. Journal of Evaluation in Clinical Practice, 18, 317 – 325.
dc.identifier.citedreferenceLinden, A. ( 2014 ) Combining propensity score‐based stratification and weighting to improve causal inference in the evaluation of health care interventions. Journal of Evaluation in Clinical Practice, 20, 1065 – 1071.
dc.identifier.citedreferenceLinden, A., Uysal, S. D., Ryan, A. & Adams, J. L. ( 2016 ) Estimating causal effects for multivalued treatments: a comparison of approaches. Statistics in Medicine, 35, 534 – 552.
dc.identifier.citedreferencePeck, C. C., Barr, W. H., Benet, L. Z., et al. ( 1992 ) Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Journal of Pharmaceutical Sciences, 81, 605 – 610.
dc.identifier.citedreferenceRoyston, P. ( 2014 ) A smooth covariate rank transformation for use in regression models with a sigmoid dose–response function. Stata Journal, 14, 329 – 341.
dc.identifier.citedreferenceDi Veroli, G. Y., Fornari, C., Goldlust, I., Mills, G., Koh, S. B., Bramhall, J. L., Richards, F. M. & Jodrell, D. I. ( 2015 ) An automated fitting procedure and software for dose–response curves with multiphasic features. Scientific reports, 5, 1 – 11.
dc.identifier.citedreferenceYarnold, P. R. & Soltysik, R. C. ( 2005 ) Optimal Data Analysis: A Guidebook with Software for Windows. Washington, DC: APA Books.
dc.identifier.citedreferenceYarnold, P. R. & Soltysik, R. C. ( 2016 ) Maximizing Predictive Accuracy. Chicago, IL: ODA Books. doi: 10.13140/RG.2.1.1368.3286
dc.identifier.citedreferenceLinden, A. & Yarnold, P. R. ( 2016 ) Using machine learning to assess covariate balance in matching studies. Journal of Evaluation in Clinical Practice, 22, 844 – 850.
dc.identifier.citedreferenceLang, C. C., Stein, C. M., Brown, R. M., Deegan, R., Nelson, R., He, H. B., Wood, M. & Wood, A. J. ( 1995 ) Attenuation of isoproterenol‐mediated vasodilatation in blacks. New England Journal of Medicine, 333, 155 – 160.
dc.identifier.citedreferenceDupont, W. D. ( 2009 ) Statistical Modeling for Biomedical Researchers. Cambridge, U.K: Cambridge University Press.
dc.identifier.citedreferenceYarnold, P. R. & Soltysik, R. C. ( 1991 ) Theoretical distributions of optima for univariate discrimination of random data. Decision Sciences, 22, 739 – 752.
dc.identifier.citedreferenceCarmony, L., Yarnold, P. R. & Naeymi‐Rad, F. ( 1997 ) One‐tailed Type I error rates for balanced two‐category UniODA with a random ordered attribute. Annals of Operations Research, 74, 223 – 238.
dc.identifier.citedreferenceLinden, A. & Yarnold, P.R. ( 2016 ) Using machine learning to identify structural breaks in single‐group interrupted time series designs. Journal of Evaluation in Clinical Practice, 22, 851 – 855.
dc.identifier.citedreferenceLinden, A., Adams, J. & Roberts, N. ( 2003 ) Evaluating disease management program effectiveness: an introduction to time series analysis. Disease Management, 6, 243 – 255.
dc.identifier.citedreferenceFeinstein, A. R. ( 1988 ) Statistical significance versus clinical importance. Quality of Life and Cardiovascular Care, 4, 99 – 102.
dc.identifier.citedreferenceKraemer, H. C. ( 1992 ) Evaluating Medical Tests. Newbury Park, CA: Sage.
dc.identifier.citedreferenceBaus, J. W. & Gose, E. E. ( 1995 ) Leukocyte pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics, SMC‐2, 513 – 526.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.