Show simple item record

Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager

dc.contributor.authorLiu, Langechuan
dc.contributor.authorAntonuk, Larry E.
dc.contributor.authorEl‐mohri, Youcef
dc.contributor.authorZhao, Qihua
dc.contributor.authorJiang, Hao
dc.date.accessioned2017-01-06T20:48:48Z
dc.date.available2017-01-06T20:48:48Z
dc.date.issued2015-04
dc.identifier.citationLiu, Langechuan; Antonuk, Larry E.; El‐mohri, Youcef ; Zhao, Qihua; Jiang, Hao (2015). "Theoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager." Medical Physics 42(4): 2072-2084.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134977
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherScintillation detectors
dc.subject.otherComputerised tomographs
dc.subject.otherRadiation therapy
dc.subject.otherBiological material, e.g. blood, urine; Haemocytometers
dc.subject.otherMeasurement of nuclear or xâ radiation
dc.subject.otherTubes for determining the presence, intensity, density or energy of radiation or particles
dc.subject.otherImager structures
dc.subject.otherthe detector being a crystal
dc.subject.otherthe detector being made of plastics
dc.subject.otherthe detector being a liquid
dc.subject.otherwith semiconductor detectors
dc.subject.otherPlates or blocks in which tracks of nuclear particles are made visible by afterâ treatment, e.g. using photographic emulsion, using mica
dc.subject.otherdual energy imager
dc.subject.othermegavoltage coneâ beam CT
dc.subject.otherkilovoltage coneâ beam CT
dc.subject.otherflatâ panel imager
dc.subject.otheractive matrix flat panel imager
dc.subject.otherhybrid modeling
dc.subject.otherMonte Carlo simulation
dc.subject.othersegmented crystalline scintillators
dc.subject.otherImage converters
dc.subject.otherMedical Xâ ray imaging
dc.subject.otherMedical image noise
dc.subject.otherModulation transfer functions
dc.subject.otherMedical image reconstruction
dc.subject.otherIllumination
dc.subject.otherMedical image contrast
dc.subject.otherCone beam computed tomography
dc.subject.otherbiological tissues
dc.subject.othercomputerised tomography
dc.subject.otherimage sensors
dc.subject.othernoise
dc.subject.otheroptical transfer function
dc.subject.otherquality assurance
dc.subject.otherradiation therapy
dc.subject.othersolid scintillation detectors
dc.subject.otherComputed tomography
dc.subject.otherTherapeutic applications, including brachytherapy
dc.subject.otherPhotons
dc.titleTheoretical investigation of the design and performance of a dual energy (kV and MV) radiotherapy imager
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134977/1/mp5120.pdf
dc.identifier.doi10.1118/1.4915120
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceD. Roberts, V. Hansen, M. Thompson, G. Poludniowski, A. Niven, J. Seco, and P. Evans, â Kilovoltage energy imaging with a radiotherapy linac with a continuously variable energy range,â Med. Phys. 39, 1218 â 1226 ( 2012 ). 10.1118/1.3681011
dc.identifier.citedreferenceL. E. Antonuk, â Electronic portal imaging devices: A review and historical perspective of contemporary technologies and research,â Phys. Med. Biol. 47, R31 â R65 ( 2002 ). 10.1088/0031â 9155/47/2/401
dc.identifier.citedreferenceN. Mail, D. Moseley, J. Siewerdsen, and D. Jaffray, â The influence of bowtie filtration on coneâ beam CT image quality,â Med. Phys. 36, 22 â 32 ( 2009 ). 10.1118/1.3017470
dc.identifier.citedreferenceM. Aubin, O. Morin, J. Chen, A. Gillis, B. Pickett, J. Aubry, C. Akazawa, J. Speight, M. Roach III, and J. Pouliot, â The use of megavoltage coneâ beam CT to complement CT for target definition in pelvic radiotherapy in the presence of hip replacement,â Br. J. Radiol. 79, 918 â 921 ( 2006 ). 10.1259/bjr/19559792
dc.identifier.citedreferenceO. Morin, J. Chen, M. Aubin, A. Gillis, J.â F. Aubry, S. Bose, H. Chen, M. Descovich, P. Xia, and J. Pouliot, â Dose calculation using megavoltage coneâ beam CT,â Int. J. Radiat. Oncol., Biol., Phys. 67, 1201 â 1210 ( 2007 ). 10.1016/j.ijrobp.2006.10.048
dc.identifier.citedreferenceY. Elâ Mohri, K.â W. Jee, L. E. Antonuk, M. Maolinbay, and Q. Zhao, â Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flatâ panel imager,â Med. Phys. 28, 2538 â 2550 ( 2001 ) 10.1118/1.1413516; Erratum: Y. Elâ Mohri, K.â W. Jee, L. E. Antonuk, M. Maolinbay, and Q. Zhao, Med. Phys. 33, 251 ( 2006 ). 10.1118/1.2135910
dc.identifier.citedreferenceB. A. Groh, J. H. Siewerdsen, D. G. Drake, J. W. Wong, and D. A. Jaffray, â A performance comparison of flatâ panel imagerâ based MV and kV coneâ beam CT,â Med. Phys. 29, 967 â 975 ( 2002 ). 10.1118/1.1477234
dc.identifier.citedreferenceE. C. Ford, J. Chang, K. Mueller, K. Sidhu, D. Todor, G. Mageras, E. Yorke, C. C. Ling, and H. Amols, â Coneâ beam CT with megavoltage beams and an amorphous silicon electronic portal imaging device: Potential for verification of radiotherapy of lung cancer,â Med. Phys. 29, 2913 â 2924 ( 2002 ). 10.1118/1.1517614
dc.identifier.citedreferenceT. R. Mackie, â History of tomotherapy,â Phys. Med. Biol. 51, R427 â R453 ( 2006 ). 10.1088/0031â 9155/51/13/r24
dc.identifier.citedreferenceH. Keller, M. Glass, R. Hinderer, K. Ruchala, R. Jeraj, G. Olivera, and T. R. Mackie, â Monte Carlo study of a highly efficient gas ionization detector for megavoltage imaging and imageâ guided radiotherapy,â Med. Phys. 29, 165 â 175 ( 2002 ). 10.1118/1.1445414
dc.identifier.citedreferenceS. Rathee, D. Tu, T. T. Monajemi, D. W. Rickey, and B. G. Fallone, â A benchâ top megavoltage fanâ beam CT using CdWO4â photodiode detectors. I. System description and detector characterization,â Med. Phys. 33, 1078 â 1089 ( 2006 ). 10.1118/1.2181290
dc.identifier.citedreferenceS. S. Samant and A. Gopal, â Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device,â Med. Phys. 33, 3557 â 3567 ( 2006 ). 10.1118/1.2241991
dc.identifier.citedreferenceP. F. Kirvan, T. T. Monajemi, B. G. Fallone, and S. Rathee, â Performance characterization of a MVCT scanner using multislice thick, segmented cadmium tungstateâ photodode detectors,â Med. Phys. 37, 249 â 257 ( 2010 ). 10.1118/1.3273032
dc.identifier.citedreferenceM. A. Moslehâ Shirazi, P. M. Evans, W. Swindell, J. R. N. Symondsâ Tayler, S. Webb, and M. Partridge, â Rapid portal imaging with a highâ efficiency, large fieldâ ofâ view detector,â Med. Phys. 25, 2333 â 2346 ( 1998 ). 10.1118/1.598443
dc.identifier.citedreferenceE. J. Seppi, P. Munro, S. W. Johnsen, E. G. Shapiro, C. Tognina, D. Jones, J. M. Pavkovich, C. Webb, I. Mollov, L. D. Partain, and R. E. Colbeth, â Megavoltage coneâ beam computed tomography using a highâ efficiency image receptor,â Int. J. Radiat. Oncol., Biol., Phys. 55, 793 â 803 ( 2003 ). 10.1016/s0360â 3016(02)04155â x
dc.identifier.citedreferenceA. Sawant, L. E. Antonuk, Y. Elâ Mohri, Y. Li, Z. Su, Y. Wang, J. Yamamoto, Q. Zhao, H. Du, and J. Daniel, â Segmented phosphors: Memsâ based high quantum efficiency detectors for megavoltage xâ ray imaging,â Med. Phys. 32, 553 â 565 ( 2005 ). 10.1118/1.1854774
dc.identifier.citedreferenceE. K. Breitbach, J. S. Maltz, B. Gangadharan, A. Baniâ Hashemi, C. M. Anderson, S. K. Bhatia, J. Stiles, D. S. Edwards, and R. T. Flynn, â Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system,â Med. Phys. 38, 5969 â 5979 ( 2011 ). 10.1118/1.3651470
dc.identifier.citedreferenceA. Sawant, L. E. Antonuk, Y. Elâ Mohri, Q. Zhao, Y. Wang, Y. Li, H. Du, and L. Perna, â Segmented crystalline scintillators: Empirical and theoretical investigation of a high quantum efficiency EPID based on an initial engineering prototype CsI(Tl) detector,â Med. Phys. 33, 1053 â 1066 ( 2006 ). 10.1118/1.2178452
dc.identifier.citedreferenceY. Wang, L. E. Antonuk, Y. Elâ Mohri, Q. Zhao, A. Sawant, and H. Du, â Monte Carlo investigations of megavoltage coneâ beam CT using thick, segmented scintillating detectors for soft tissue visualization,â Med. Phys. 35, 145 â 158 ( 2008 ). 10.1118/1.2818957
dc.identifier.citedreferenceY. Wang, L. E. Antonuk, Q. Zhao, Y. Elâ Mohri, and L. Perna, â Highâ DQE EPIDs based on thick, segmented BGO and CsI: Tl scintillators: Performance evaluation at extremely low dose,â Med. Phys. 36, 5707 â 5718 ( 2009 ). 10.1118/1.3259721
dc.identifier.citedreferenceY. Wang, L. E. Antonuk, Y. Elâ Mohri, and Q. Zhao, â A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging,â Med. Phys. 36, 3227 â 3238 ( 2009 ). 10.1118/1.3125821
dc.identifier.citedreferenceY. Elâ Mohri, L. E. Antonuk, Q. Zhao, R. B. Choroszucha, H. Jiang, and L. Liu, â Lowâ dose megavoltage coneâ beam CT imaging using thick, segmented scintillators,â Phys. Med. Biol. 56, 1509 â 1527 ( 2011 ). 10.1088/0031â 9155/56/6/001
dc.identifier.citedreferenceL. Liu, L. E. Antonuk, Q. Zhao, Y. Elâ Mohri, and H. Jiang, â Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers,â Phys. Med. Biol. 57, 5343 â 5358 ( 2012 ). 10.1088/0031â 9155/57/16/5343
dc.identifier.citedreferenceY. Elâ Mohri, L. E. Antonuk, R. B. Choroszucha, Q. Zhao, H. Jiang, and L. Liu, â Optimization of the performance of segmented scintillators for radiotherapy imaging through novel binning techniques,â Phys. Med. Biol. 59, 797 â 818 ( 2014 ). 10.1088/0031â 9155/59/4/797
dc.identifier.citedreferenceL. Liu, L. E. Antonuk, Y. Elâ Mohri, Q. Zhao, and H. Jiang, â Optimization of the design of thick, segmented scintillators for megavoltage coneâ beam CT using a novel, hybrid modeling technique,â Med. Phys. 41, 061916 (14pp.) ( 2014 ). 10.1118/1.4875724
dc.identifier.citedreferenceM. Weissbluth, C. Karzmark, R. Steele, and A. Selby, â The Stanford medical linear accelerator: II. Installation and physical measurements 1,â Radiology 72, 242 â 265 ( 1959 ). 10.1148/72.2.242
dc.identifier.citedreferenceH. Johns and J. Cunningham, â A precision cobalt 60 unit for fixed field and rotation therapy,â Am. J. Roentgenol., Radium Ther. Nucl. Med. 81, 4 â 12 ( 1959 ).
dc.identifier.citedreferenceY. Cho and P. Munro, â Kilovision: Thermal modeling of a kilovoltage xâ ray source integrated into a medical linear accelerator,â Med. Phys. 29, 2101 â 2108 ( 2002 ). 10.1118/1.1501142
dc.identifier.citedreferenceD. M. Galbraith, â Lowâ energy imaging with highâ energy bremsstrahlung beams,â Med. Phys. 16, 734 â 746 ( 1989 ). 10.1118/1.596332
dc.identifier.citedreferenceB. A. Faddegon, V. Wu, J. Pouliot, B. Gangadharan, and A. Baniâ Hashemi, â Low dose megavoltage cone beam computed tomography with an unflattened 4 MV beam from a carbon target,â Med. Phys. 35, 5777 â 5786 ( 2008 ). 10.1118/1.3013571
dc.identifier.citedreferenceJ. L. Robar, T. Connell, W. Huang, and R. G. Kelly, â Megavoltage planar and coneâ beam imaging with lowâ Z targets: Dependence of image quality improvement on beam energy and patient separation,â Med. Phys. 36, 3955 â 3963 ( 2009 ). 10.1118/1.3183499
dc.identifier.citedreferenceD. Parsons, J. L. Robar, and D. Sawkey, â A Monte Carlo investigation of lowâ Z target image quality generated in a linear accelerator using varian’s virtualinac,â Med. Phys. 41, 021719 (6pp.) ( 2014 ). 10.1118/1.4861818
dc.identifier.citedreferenceJ. Rottmann, M. Aristophanous, A. Chen, L. Court, and R. Berbeco, â A multiâ region algorithm for markerless beam’sâ eye view lung tumor tracking,â Phys. Med. Biol. 55, 5585 â 5598 ( 2010 ). 10.1088/0031â 9155/55/18/021
dc.identifier.citedreferenceF.â F. Yin, H. Guan, and W. Lu, â A technique for onâ board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification,â Med. Phys. 32, 2819 â 2826 ( 2005 ). 10.1118/1.1997307
dc.identifier.citedreferenceT. Falco and B. G. Fallone, â Characteristics of metalâ plate/film detectors at therapy energies. I. Modulation transfer function,â Med. Phys. 25, 2455 â 2462 ( 1998 ). 10.1118/1.598436
dc.identifier.citedreferenceC. Kausch, B. Schreiber, F. Kreuder, R. Schmidt, and O. Dössel, â Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy,â Med. Phys. 26, 2113 â 2124 ( 1999 ). 10.1118/1.598727
dc.identifier.citedreferenceJ. Yorkston, L. E. Antonuk, Y. Elâ Mohri, K.â W. Jee, W. Huang, M. Maolinbay, X. Rong, J. H. Siewerdsen, and D. P. Trauernicht, â Improved spatial resolution in flatâ panel imaging systems,â Proc. SPIE 3336, 556 â 563 ( 1998 ). 10.1117/12.317058
dc.identifier.citedreferenceY. Elâ Mohri, L. E. Antonuk, Q. Zhao, Y. Wang, Y. Li, H. Du, and A. Sawant, â Performance of a high fill factor, indirect detection prototype flatâ panel imager for mammography,â Med. Phys. 34, 315 â 327 ( 2007 ). 10.1118/1.2403967
dc.identifier.citedreferenceF. H. Attix, Introduction to Radiological Physics and Radiation Dosimetry ( Wileyâ VCH Verlag GmbH & Co., Weinheim, 2004 ).
dc.identifier.citedreferenceK. Sato, F. Nariyuki, H. Nomura, A. Takasu, S. Fukui, M. Nakatsu, Y. Okada, T. Nabeta, and Y. Hosoi, â Effect of xâ ray incident direction and scintillator layer design on image quality of indirectâ conversion flatâ panel detector with GOS phosphor,â Proc. SPIE 7961, 79614I ( 2011 ). 10.1117/12.877752
dc.identifier.citedreferenceS. Rivetti, N. Lanconelli, M. Bertolini, A. Nitrosi, and A. Burani, â Characterization of a clinical unit for digital radiography based on irradiation side sampling technology,â Med. Phys. 40, 101902 (11pp.) ( 2013 ). 10.1118/1.4820364
dc.identifier.citedreferenceI. Kawrakow and D. W. O. Rogers, â The EGSnrc code system: Monte carlo simulation of electron and photon transport,â Technical Report No. PIRSâ 701 ( National Research Council of Canada, Ottawa, Canada, 2000 ).
dc.identifier.citedreferenceI. Kawrakow, â egspp: The EGSnrc c++ class library,â Technical Report No. PIRSâ 899 ( National Research Council of Canada, Ottawa, Canada, 2005 ).
dc.identifier.citedreferenceJ. M. Boone and J. A. Seibert, â An accurate method for computerâ generating tungsten anode xâ ray spectra from 30 to 140 kV,â Med. Phys. 24, 1661 â 1670 ( 1997 ). 10.1118/1.597953
dc.identifier.citedreferenceD. Sheikhâ Bagheri, Ph.D. thesis, Carleton University, Ottawa, 1999.
dc.identifier.citedreferenceS. Agostinelli et al., â geant4 â A simulation toolkit,â Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 â 303 ( 2003 ). 10.1016/s0168â 9002(03)01368â 8
dc.identifier.citedreferenceM. Maolinbay, Y. Elâ Mohri, L. Antonuk, K.â W. Jee, S. Nassif, X. Rong, and Q. Zhao, â Additive noise properties of active matrix flatâ panel imagers,â Med. Phys. 27, 1841 â 1854 ( 2000 ). 10.1118/1.1286721
dc.identifier.citedreferenceP. A. Tipler and G. Mosca, Physics for Scientists and Engineers, 6 ed. ( Freeman, W. H. & Company, New York, NY, 2007 ).
dc.identifier.citedreferenceL. E. Antonuk, Q. Zhao, Y. Elâ Mohri, H. Du, Y. Wang, R. A. Street, J. Ho, R. Weisfield, and W. Yao, â An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flatâ panel arrays,â Med. Phys. 36, 3322 â 3339 ( 2009 ). 10.1118/1.3049602
dc.identifier.citedreferenceM. Maolinbay, T. Zimmerman, R. Yarema, L. Antonuk, Y. Elâ Mohri, and M. Yeakey, â Design and performance of a low noise, 128â channel ASIC preamplifier for readout of active matrix flatâ panel imaging arrays,â Nucl. Instrum. Methods Phys. Res., Sect. A 485, 661 â 675 ( 2002 ). 10.1016/s0168â 9002(01)02129â 5
dc.identifier.citedreferenceM. F. Fast, T. Koenig, U. Oelfke, and S. Nill, â Performance characteristics of a novel megavoltage coneâ beamâ computed tomography device,â Phys. Med. Biol. 57, N15 â N24 ( 2012 ). 10.1088/0031â 9155/57/3/n15
dc.identifier.citedreferenceH. Fujita, D. Tsai, T. Itoh, K. Doi, J. Morishita, K. Ueda, and A. Ohtsuka, â A simple method for determining the modulation transfer function in digital radiography,â IEEE Trans. Med. Imaging 11, 34 â 39 ( 1992 ). 10.1109/42.126908
dc.identifier.citedreferenceR. K. Swank, â Absorption and noise in xâ ray phosphors,â J. Appl. Phys. 44, 4199 â 4203 ( 1973 ). 10.1063/1.1662918
dc.identifier.citedreferenceW. Zhao, G. Ristic, and J. A. Rowlands, â Xâ ray imaging performance of structured cesium iodide scintillators,â Med. Phys. 31, 2594 â 2605 ( 2004 ). 10.1118/1.1782676
dc.identifier.citedreferenceE. Samei, â Image quality in two phosphorâ based flat panel digital radiographic detectors,â Med. Phys. 30, 1747 â 1757 ( 2003 ). 10.1118/1.1578772
dc.identifier.citedreferenceY. Wang, Y. Elâ Mohri, L. E. Antonuk, and Q. Zhao, â Monte Carlo investigations of the effect of beam divergence on thick, segmented crystalline scintillators for radiotherapy imaging,â Phys. Med. Biol. 55, 3659 â 3673 ( 2010 ). 10.1088/0031â 9155/55/13/006
dc.identifier.citedreferenceR. A. Street, W. S. Wong, and R. Lujan, â Curved electronic pixel arrays using a cut and bend approach,â J. Appl. Phys. 105, 104504 ( 2009 ). 10.1063/1.3129315
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.