Show simple item record

Synchronized dynamic dose reconstruction

dc.contributor.authorLitzenberg, Dale W.
dc.contributor.authorHadley, Scott W.
dc.contributor.authorTyagi, Neelam
dc.contributor.authorBalter, James M.
dc.contributor.authorTen Haken, Randall K.
dc.contributor.authorChetty, Indrin J.
dc.date.accessioned2017-01-06T20:48:48Z
dc.date.available2017-01-06T20:48:48Z
dc.date.issued2007-01
dc.identifier.citationLitzenberg, Dale W.; Hadley, Scott W.; Tyagi, Neelam; Balter, James M.; Ten Haken, Randall K.; Chetty, Indrin J. (2007). "Synchronized dynamic dose reconstruction." Medical Physics 34(1): 91-102.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/134978
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphantoms
dc.subject.otherMonte Carlo
dc.subject.otherdelivered dose
dc.subject.otherintra‐fraction motion
dc.subject.otherIntensity modulated radiation therapy
dc.subject.otherDosimetry
dc.subject.otherMedical treatment planning
dc.subject.otherImage registration
dc.subject.otherError analysis
dc.subject.otherMedical imaging
dc.subject.otherKinematics
dc.subject.otherComputed tomography
dc.subject.otherTreatment strategy
dc.subject.otherReal time information delivery
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherWedges and compensators
dc.subject.otherMultileaf collimators
dc.subject.otherCollimation
dc.subject.otherAncillary equipment
dc.subject.otherdosimetry
dc.subject.otherradiation therapy
dc.subject.otherintensity modulation
dc.subject.othercollimators
dc.subject.otherreal‐time tracking
dc.titleSynchronized dynamic dose reconstruction
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48109
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134978/1/mp8157.pdf
dc.identifier.doi10.1118/1.2388157
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceS. Webb, “ Motion effects in (intensity modulated) radiation therapy: A review,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/51/13/R23 --> 51 ( 13 ), R403 – R425 ( 2006 ).
dc.identifier.citedreferenceP. Xia, C. F. Chuang, and L. J. Verhey, “ Communication and sampling rate limitations in IMRT delivery with a dynamic multileaf collimator system,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1449496 --> 29 ( 3 ), 412 – 423 ( 2002 ).
dc.identifier.citedreferenceL. Ma, P. B. Geis, and A. L. Boyer, “ Quality assurance for dynamic multileaf collimator modulated fields using a fast beam imaging system,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598157 --> 24 ( 8 ), 1213 – 1220 ( 1997 ).
dc.identifier.citedreferenceJ. Sonke, J. M. Balter, M. van Herk, L. Zijp, M. L. Kessler, and R. Kashani, “ Recalculation of dose changes due to breathing movement assessed from respiratory‐correlated cone beam CT,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 60 ( s1 ), S289 ( 2004 ).
dc.identifier.citedreferenceB. Schaly, G. S. Bauman, J. J. Battista, and J. V. Dyk, “ Validation of contour‐driven thin‐plate splines for tracking fraction‐to‐fraction changes in anatomy and radiation therapy dose mapping,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/50/3/005 --> 50, 459 – 475 ( 2005 ).
dc.identifier.citedreferenceJ. M. Balter, K. L. Lam, C. J. McGinn, T. S. Lawrence, and R. K. Ten Haken, “ Improvement of CT‐based treatment‐planning models of abdominal targets using static exhale imaging,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(98)00130‐8 --> 41 ( 4 ), 939 – 943 ( 1998 ).
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, D. L. McShan, B. A. Fraass, J. M. Balter, and R. K. Ten Haken, “ Accounting for center‐of‐mass target motion using convolution methods in Monte Carlo‐based dose calculations of the lung,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1669083 --> 31 ( 4 ), 925 – 932 ( 2004 ).
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, N. Tyagi, L. H. Marsh, D. L. McShan, J. M. Balter, B. A. Fraass, and R. K. Ten Haken, “ A fluence convolution method to account for respiratory motion in three‐dimensional dose calculations of the liver: A Monte Carlo study,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1581412 --> 30 ( 7 ), 1776 – 1780 ( 2003 ).
dc.identifier.citedreferenceP. Giraud, Y. De Rycke, B. Dubray, S. Helfre, D. Voican, L. Guo, J. C. Rosenwald, K. Keraudy, M. Housset, E. Touboul, and J. M. Cosset, “ Conformal radiotherapy (CRT) planning for lung cancer: Analysis of intrathoracic organ motion during extreme phases of breathing,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(01)01766‐7 --> 51 ( 4 ), 1081 – 1092 ( 2001 ).
dc.identifier.citedreferenceP. J. Keall, J. V. Siebers, S. Joshi, and R. Mohan, “ Monte Carlo as a four‐dimensional radiotherapy treatment‐planning tool to account for respiratory motion,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/16/011 --> 49 ( 16 ), 3639 – 3648 ( 2004 ).
dc.identifier.citedreferenceJ. Li and L. Xing, “ Inverse planning incorporating organ motion,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.599023 --> 27 ( 7 ), 1573 – 1578 ( 2000 ).
dc.identifier.citedreferenceD. M. Lockman, D. Yan, and J. Wong, “ Estimating the dose variation in a volume of interest with explicit consideration of patient geometric variation,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1288683 --> 27 ( 9 ), 2100 – 2108 ( 2000 ).
dc.identifier.citedreferenceA. E. Lujan, J. M. Balter, and R. K. Ten Haken, “ A method for incorporating organ motion due to breathing into 3D dose calculations in the liver: Sensitivity to variations in motion,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1609057 --> 30 ( 10 ), 2643 – 2649 ( 2003 ).
dc.identifier.citedreferenceT. Bortfeld, K. Jokivarsi, M. Goitein, J. Kung, and S. B. Jiang, “ Effects of intra‐fraction motion on IMRT dose delivery: Statistical analysis and simulation,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/47/13/302 --> 47 ( 13 ), 2203 – 2220 ( 2002 ).
dc.identifier.citedreferenceI. J. Chetty, K. L. Lam, J. M. Balter, R. K. Ten Haken, D. L. McShan, and H. M. Sandler, “ Dosimetric implications of approximating setup uncertainties with Gaussian distributions in Monte Carlo based prostate cancer treatment planning,” Radiother. Oncol. RAONDT --> 0167‐8140 --> (submitted) ( 2005 ).
dc.identifier.citedreferenceI. J. Chetty, M. Rosu, D. L. McShan, B. A. Fraass, and R. K. Ten Haken, “ Inverse plan optimization incorporating random setup uncertainties using Monte Carlo based fluence convolution,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> (submitted) ( 2005 ).
dc.identifier.citedreferenceT. R. Mackie, J. W. Scrimger, and J. J. Battista, “ A convolution method of calculating dose for 15 MV x rays,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.595774 --> 12 ( 2 ), 188 – 196 ( 1985 ).
dc.identifier.citedreferenceR. George, S. S. Vedam, T. D. Chung, V. Ramakrishnan, and P. J. Keall, “ The application of the sinusoidal model to lung cancer patient respiratory motion,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.2001220 --> 32 ( 9 ), 2850 – 2861 ( 2005 ).
dc.identifier.citedreferenceS. Webb, “ The effect on IMRT conformality of elastic tissue movement and a practical suggestion for movement compensation via the modified dynamic multileaf collimator (dMLC) technique,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/50/6/009 --> 50 ( 6 ), 1163 – 1190 ( 2005 ).
dc.identifier.citedreferenceL. Papiez, D. Rangaraj, and P. Keall, “ Real‐time DMLC IMRT delivery for mobile and deforming targets,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1987967 --> 32 ( 9 ), 3037 – 3048 ( 2005 ).
dc.identifier.citedreferenceC. S. Chui, E. Yorke, and L. Hong, “ The effects of intra‐fraction organ motion on the delivery of intensity‐modulated field with a multileaf collimator,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1578771 --> 30 ( 7 ), 1736 – 1746 ( 2003 ).
dc.identifier.citedreferenceS. A. Naqvi and W. D. D’Souza, “ A stochastic convolution/superposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1881832 --> 32 ( 4 ), 1156 – 1163 ( 2005 ).
dc.identifier.citedreferenceD. W. Litzenberg, J. M. Moran, and B. A. Fraass, “ Verification of dynamic and segmental IMRT delivery by dynamic log file analysis,” J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 10.1120/1.1449362 --> 3 ( 2 ), 63 – 72 ( 2002 ).
dc.identifier.citedreferenceA. M. Stell, J. G. Li, O. A. Zeidan, and J. F. Dempsey, “ An extensive log‐file analysis of step‐and‐shoot intensity modulated radiation therapy segment delivery errors,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1751011 --> 31 ( 6 ), 1593 – 1602 ( 2004 ).
dc.identifier.citedreferenceJ. G. Li, J. F. Dempsey, L. Ding, C. Liu, and J. R. Palta, “ Validation of dynamic MLC‐controller log files using a two‐dimensional diode array,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1567951 --> 30 ( 5 ), 799 – 805 ( 2003 ).
dc.identifier.citedreferenceO. A. Zeidan, J. G. Li, M. Ranade, A. M. Snell, and J. F. Dempsey, “ Verification of step‐and‐shoot IMRT delivery using a fast video‐based electronic portal imaging device,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1644518 --> 31 ( 3 ), 463 – 476 ( 2004 ).
dc.identifier.citedreferenceP. Zygmanski, J. H. Kung, S. B. Jiang, and L. Chin, “ Dependence of fluence errors in dynamic IMRT on leaf‐positional errors varying with time and leaf number,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1598674 --> 30 ( 10 ), 2736 – 2749 ( 2003 ).
dc.identifier.citedreferenceJ. M. Balter, S. Hadley, D. Litzenberg, H. Sandler, E. Vertatschitsch, S. Dimmer, T. Willoughby, and P. Kupelian, “ Accuracy of a 4D magnetic localization system: Evaluation in the clinical environment,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 60 ( 1 Supplement ), S612 – S613 ( 2004 ).
dc.identifier.citedreferenceT. Willoughby, P. Kupelian, J. Pouliot, K. Shinohara, M. Aubin, M. Roach III, L. Skrumeda, J. Balter, D. Litzenberg, S. Hadley, J. Wei, and H. Sandler, “ Implant experience and positional stability of AC magnetic beacon(tm) transponders used to localize patients for external beam radiation therapy of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 60 ( Suppl 1 ), S267 – S268 ( 2004 ).
dc.identifier.citedreferenceD. W. Litzenberg, J. M. Balter, S. W. Hadley, H. M. Sandler, T. R. Willoughby, P. A. Kupelian, and L. Levine, “ The influence of intra‐fraction motion on margins for prostate radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 65 ( 2 ), 548 – 553 ( 2006 ).
dc.identifier.citedreferenceJ. Sempau, S. J. Wilderman, and A. F. Bielajew, “ DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/45/8/315 --> 24, 2263 – 2291 ( 2000 ).
dc.identifier.citedreferenceI. J. Chetty, P. M. Charland, N. Tyagi, D. L. McShan, B. A. Fraass, and A. F. Bielajew, “ Photon beam relative dose validation of the DPM Monte Carlo code in lung‐equivalent media,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1555671 --> 30 ( 4 ), 563 – 573 ( 2003 ).
dc.identifier.citedreferenceI. J. Chetty, J. J. DeMarco, and T. D. Solberg, “ A virtual source model for Monte Carlo modeling of arbitrary intensity distributions,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598881 --> 27 ( 1 ), 166 – 172 ( 2000 ).
dc.identifier.citedreferenceI. J. Chetty, J. M. Moran, D. L. McShan, B. A. Fraass, S. J. Wilderman, and A. F. Bielajew, “ Benchmarking of the Dose Planning Method (DPM) Monte Carlo code using electron beams from a racetrack microtron,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1481512 --> 29 ( 6 ), 1035 – 1041 ( 2002 ).
dc.identifier.citedreferenceN. Tyagi, I. J. Chetty, B. A. Fraass, and A. F. Bielajew, “ Calculations of a Millennium Multileaf Collimator using the DPM and BEAM/DOSXYZ Monte Carlo codes,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1478559 --> 29 ( 6 ), 1230 ( 2002 ).
dc.identifier.citedreferenceI. J. Chetty, N. Tyagi, M. Rosu, P. M. Charland, D. L. McShan, R. K. Ten Haken, B. A. Fraass, and A. F. Bielajew, presented at the Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew, Gatlinburg, TN, 2003 (unpublished).
dc.identifier.citedreferenceM. Rosu, M. M. Coselmon, E. Acosta, B. Fraass, M. D, and I. J. Chetty, “ Implementation and initial testing of a Monte Carlo based algorithm for IMRT inverse treatment planning,” Med. Phys. MPHYA6 --> 0094‐2405 --> (accepted).
dc.identifier.citedreferenceN. Tyagi, J. M. Moran, D. W. Litzenberg, A. F. Bielajew, B. A. Fraass, and I. J. Chetty, “ Experimental verification of a Monte Carlo‐based source model for IMRT treatment planning,” Med. Phys. MPHYA6 --> 0094‐2405 --> (accepted).
dc.identifier.citedreferenceD. W. O. Rogers, B. R. Walters, and I. Kawrakow, BEAMnrc Users Manual: National Research Council Report PIRS‐0509(A) rev. H. (Ottawa, Canada, 2004 ).
dc.identifier.citedreferenceD. W. Litzenberg, S. W. Hadley, K. L. Lam, and J. M. Balter, “ A precision translation stage for reproducing measured target volume motions,” J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> (accepted).
dc.identifier.citedreferenceP. Thévenaz and M. Unser, “ A pyramid approach to subpixel registration based on intensity,” IEEE Trans. Image Process. IIPRE4 --> 1057‐7149 --> 10.1109/83.650848 --> 7, 27 – 41 ( 1998 ).
dc.identifier.citedreferenceC. Burman, C. S. Chui, G. Kutcher, S. Leibel, M. Zelefsky, T. LoSasso, S. Spirou, Q. Wu, J. Yang, J. Stein, R. Mohan, Z. Fuks, and C. C. Ling, “ Planning delivery and quality assurance of intensity‐modulated radiotherapy using dynamic multileaf collimator: A strategy for large‐scale implementation for the treatment of carcinoma of the prostate,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(97)00458‐6 --> 39 ( 4 ), 863 – 873 ( 1997 ).
dc.identifier.citedreferenceJ. M. Balter, J. N. Wright, L. J. Newell, B. Frieme, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “ Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/j.ijrobp.2004.11.009 --> 61 ( 3 ), 933 – 937 ( 2005 ).
dc.identifier.citedreferenceC. X. Yu, D. A. Jaffray, and J. W. Wong, “ The effects of intra‐fraction organ motion on the delivery of dynamic intensity modulation,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/43/1/006 --> 43 ( 1 ), 91 – 104 ( 1998 ).
dc.identifier.citedreferenceP. J. Keall, V. R. Kini, S. S. Vedam, and R. Mohan, “ Motion adaptive x‐ray therapy: A feasibility study,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/46/1/301 --> 46, 1 – 10 ( 2001 ).
dc.identifier.citedreferenceS. B. Jiang, C. Pope, K. M. Al Jarrah, J. H. Kung, T. Bortfeld, and G. T. Chen, “ An experimental investigation on intra‐fractional organ motion effects in lung IMRT treatments,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/48/12/307 --> 48 ( 12 ), 1773 – 1784 ( 2003 ).
dc.identifier.citedreferenceT. R. Bortfeld, D. L. Kahler, T. J. Waldron, and A. L. Boyer, “ X‐ray field compensation with multileaf collimators,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 28 ( 3 ), 723 – 730 ( 1994 ).
dc.identifier.citedreferenceS. M. Crooks, L. F. McAven, D. F. Robinson, and L. Xing, “ Minimizing delivery time and monitor units in statis IMRT by leaf‐sequencing,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/47/17/305 --> 47, 3105 – 3116 ( 2003 ).
dc.identifier.citedreferenceM. L. Dirkx, B. J. Heijmen, and J. P. van Santvoort, “ Leaf trajectory calculation for dynamic multileaf collimation to realize optimized fluence profiles,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/43/5/009 --> 43 ( 5 ), 1171 – 1184 ( 1998 ).
dc.identifier.citedreferenceS. Kamath, S. Sahni, J. Palta, and S. Ranka, “ Algorithms for optimal sequencing of dynamic multileaf collimators,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/1/003 --> 49, 33 – 54 ( 2004 ).
dc.identifier.citedreferenceM. Langer, V. Thai, and L. Papiez, “ Improved leaf sequencing reduces segments or monitor units needed to delivery IMRT using multileaf collimators,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1420392 --> 28 ( 12 ), 2450 – 2458 ( 2001 ).
dc.identifier.citedreferenceD. W. Litzenberg, J. M. Moran, and B. A. Fraass, “ Incorporation of realistic delivery limitations into dynamic MLC treatment delivery,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1470499 --> 29 ( 5 ), 810 – 820 ( 2002 ).
dc.identifier.citedreferenceL. Ma, A. L. Boyer, L. Xing, and C. M. Ma, “ An optimized leaf‐setting algorithm for beam intensity modulation using dynamic multileaf collimators,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/43/6/019 --> 43 ( 6 ), 1629 – 1643 ( 1998 ).
dc.identifier.citedreferenceC. B. Saw, R. A. C. Siochi, K. M. Ayyangar, W. Zhen, and C. A. Enke, “ Leaf sequencing techniques for MLC‐based IMRT,” Med. Dosim 0739‐0211 --> 26 ( 2 ), 199 – 204 ( 2001 ).
dc.identifier.citedreferenceJ. P. van Santvoort and B. J. Heijmen, “ Dynamic multileaf collimation without ‘tongue‐and‐groove’ underdosage effects,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/41/10/017 --> 41 ( 10 ), 2091 – 2105 ( 1996 ).
dc.identifier.citedreferenceP. Xia and L. Verhey, “ Multileaf collimator leaf sequencing algorithm for intensity modulated beams with multiple static segments,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.598315 --> 25 ( 8 ), 1424 – 1434 ( 1998 ).
dc.identifier.citedreferenceY. Yang and L. Xing, “ Incorporating leaf transmission and head scatter corrections into step‐and‐shoot leaf sequences for IMRT,” Int. J. Radiat. Oncol., Biol., Phys. IOBPD3 --> 0360‐3016 --> 10.1016/S0360‐3016(02)04417‐6 --> 55 ( 4 ), 1121 – 1134 ( 2003 ).
dc.identifier.citedreferenceW. Que, J. Kung, and J. Dai, “ ‘Tongue‐and‐groove’ effect in intensity modulated radiotherapy with static multileaf collimator fields,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/3/004 --> 49 ( 3 ), 399 – 405 ( 2004 ).
dc.identifier.citedreferenceS. Kamath, S. Sahni, S. Ranka, J. Li, and J. Palta, “ A comparison of step‐and‐shoot leaf sequencing algorithms that eliminate tongue‐and‐groove effects,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/14/008 --> 49 ( 14 ), 3137 – 3143 ( 2004 ).
dc.identifier.citedreferenceS. Kamath, S. Sahni, J. Palta, S. Ranka, and J. Li, “ Optimal leaf sequencing with elimination of tongue‐and‐groove underdosage,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 49 ( 3 ), 7 – 19 ( 2004 ).
dc.identifier.citedreferenceD. Jianrong and W. Que, “ Simultaneous minimization of leaf travel distance and tongue‐and‐groove effect for segmental intensity‐modulated radiation therapy,” Phys. Med. Biol. PHMBA7 --> 0031‐9155 --> 10.1088/0031‐9155/49/23/009 --> 49 ( 23 ), 5319 – 5331 ( 2004 ).
dc.identifier.citedreferenceF. Haryanto, M. Fippel, A. Bakai, and F. Nusslin, “ Study on the tongue and groove effect of the Elekta multileaf collimator using Monte Carlo simulation and film dosimetry,” Strahlenther. Onkol. STONE4 --> 0179‐7158 --> 180 ( 1 ), 57 – 61 ( 2004 ).
dc.identifier.citedreferenceT. LoSasso, C.‐S. Chui, and C. C. Ling, “ Comprehensive quality assurance for the delivery of intensity modulated radiotherapy with a multileaf collimator used in the dynamic mode,” Med. Phys. MPHYA6 --> 0094‐2405 --> 10.1118/1.1410123 --> 28 ( 11 ), 2209 – 2219 ( 2001 ).
dc.identifier.citedreferenceG. A. Ezzell and S. Chungbin, “ The overshoot phenomenon in step‐and‐shoot IMRT delivery,” J. Appl. Clin. Med. Phys. JACMFG --> 1526‐9914 --> 2 ( 3 ), 138 – 148 ( 2001 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.