Show simple item record

Growth of magnetotactic sulfate‐reducing bacteria in oxygen concentration gradient medium

dc.contributor.authorLefèvre, Christopher T.
dc.contributor.authorHowse, Paul A.
dc.contributor.authorSchmidt, Marian L.
dc.contributor.authorSabaty, Monique
dc.contributor.authorMenguy, Nicolas
dc.contributor.authorLuther, George W.
dc.contributor.authorBazylinski, Dennis A.
dc.date.accessioned2017-01-06T20:49:03Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-12
dc.identifier.citationLefèvre, Christopher T. ; Howse, Paul A.; Schmidt, Marian L.; Sabaty, Monique; Menguy, Nicolas; Luther, George W.; Bazylinski, Dennis A. (2016). "Growth of magnetotactic sulfate‐reducing bacteria in oxygen concentration gradient medium." Environmental Microbiology Reports 8(6): 1003-1015.
dc.identifier.issn1758-2229
dc.identifier.issn1758-2229
dc.identifier.urihttps://hdl.handle.net/2027.42/134993
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.titleGrowth of magnetotactic sulfate‐reducing bacteria in oxygen concentration gradient medium
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbsecondlevelNatural Resources and Environment Science
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134993/1/emi412479.pdf
dc.identifier.doi10.1111/1758-2229.12479
dc.identifier.sourceEnvironmental Microbiology Reports
dc.identifier.citedreferencePostgate, J.R. ( 1985 ) The Sulfate‐Reducing Bacteria (2nd Edition) University Press, Cambridge. J Basic Microbiol 25: 202 – 202.
dc.identifier.citedreferencePósfai, M., Moskowitz, B.M., Arató, B., Schüler, D., Flies, C., Bazylinski, D.A., and Frankel, R.B. ( 2006 ) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS‐1. Earth Planet Sci Lett 249: 444 – 455.
dc.identifier.citedreferenceRabus, R., Hansen, T.A., Widdel, F. ( 2013 ) Dissimilatory Sulfate‐ and Sulfur‐Reducing Prokaryotes. In The Prokaryotes. Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds). Berlin Heidelberg: Springer, pp. 309 – 404.
dc.identifier.citedreferenceRamel, F., Brasseur, G., Pieulle, L., Valette, O., Hirschler‐Réa, A., Fardeau, M.L., and Dolla, A. ( 2015 ) Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: Impact of the membrane‐bound oxygen reductases. PloS One 10: e0123455.
dc.identifier.citedreferenceRamsing, N.B., Kühl, M., and Jørgensen, B.B. ( 1993 ) Distribution of sulfate‐reducing bacteria, O 2, and H 2 S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Appl Environ Microbiol 59: 3840 – 3849.
dc.identifier.citedreferenceRanade, D.R., Dighe, A.S., Bhirangi, S.S., Panhalkar, V.S., and Yeole, T.Y. ( 1999 ) Evaluation of the use of sodium molybdate to inhibit sulphate reduction during anaerobic digestion of distillery waste. Bioresour Technol 68: 287 – 291.
dc.identifier.citedreferenceRinke, C., Schwientek, P., Sczyrba, A., Ivanova, N.N., Anderson, I.J., Cheng, J.F., et al. ( 2013 ) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499: 431 – 437.
dc.identifier.citedreferenceSaitou, N., and Nei, M. ( 1987 ) The neighbor‐joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406 – 425.
dc.identifier.citedreferenceSakaguchi, T., Arakaki, A., and Matsunaga, T. ( 2002 ) Desulfovibrio magneticus sp nov., a novel sulfate‐reducing bacterium that produces intracellular single‐domain‐sized magnetite particles. Int J Syst Evol Microbiol 52: 215 – 221.
dc.identifier.citedreferenceSass, H., Cypionka, H., and Babenzien, H.D. ( 1996 ) Sulfate‐reducing bacteria from the oxic sediment layers of the oligotrophic Lake Stechlin. Adv Limnol 48: 241 – 246.
dc.identifier.citedreferenceSass, H., Cypionka, H., and Babenzien, H.D. ( 1997 ) Vertical distribution of sulfate‐reducing bacteria at the oxic‐anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol 22: 245 – 255.
dc.identifier.citedreferenceSass, H., Berchtold, M., Branke, J., König, H., Cypionka, H., and Babenzien, H.D. ( 1998 ) Psychrotolerant sulfate‐reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. Syst Appl Microbiol 21: 212 – 219.
dc.identifier.citedreferenceSchüler, D. ( 2002 ) The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol Off J Span Soc Microbiol 5: 209 – 214.
dc.identifier.citedreferenceSigalevich, P., Meshorer, E., Helman, Y., and Cohen, Y. ( 2000 ) Transition from anaerobic to aerobic growth conditions for the sulfate‐reducing bacterium Desulfovibrio oxyclinae results in flocculation. Appl Environ Microbiol 66: 5005 – 5012.
dc.identifier.citedreferenceStorz, G., Tartaglia, L.A., Farr, S.B., and Ames, B.N. ( 1990 ) Bacterial defenses against oxidative stress. Trends Genet TIG 6: 363 – 368.
dc.identifier.citedreferenceTamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. ( 2011 ) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731 – 2739.
dc.identifier.citedreferenceTeske, A., Ramsing, N.B., Habicht, K., Fukui, M., Küver, J., Jørgensen, B.B., and Cohen, Y. ( 1998 ) Sulfate‐reducing bacteria and their activities in cyanobacterial mats of solar lake (Sinai, Egypt). Appl Environ Microbiol 64: 2943 – 2951.
dc.identifier.citedreferenceVali, H., Kirschvink, J.L. ( 1991 ) Observations of magnetosome organization, surface structure, and iron biomineralization of undescribed magnetic bacteria: Evolutionary speculations. In Iron Biominerals. Frankel, R.B. and Blakemore, R.P. (eds). New York: Plenum Press, pp. 97 – 115.
dc.identifier.citedreferenceVoordouw, G., and Wall, J.D. ( 1993 ) Genetics and molecular biology of sulfate‐reducing bacteria. In Genetics and Molecular Biology of Anaerobic Bacteria, Brock/Springer Series in Contemporary Bioscience. Sebald, M. (ed). New York: Springer, pp. 456 – 473.
dc.identifier.citedreferenceWolfe, R.S., Thauer, R.K., and Pfennig, N. ( 1987 ) A “capillary racetrack” method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 45: 31 – 35.
dc.identifier.citedreferenceWolin, E.A., Wolin, M.J., and Wolfe, R.S. ( 1963 ) Formation of methane by bacterial extracts. J Biol Chem 238: 2882 – 2886.
dc.identifier.citedreferenceAbreu, F., Cantão, M.E., Nicolás, M.F., Barcellos, F.G., Morillo, V., Almeida, L.G. et al. ( 2011 ) Common ancestry of iron oxide‐ and iron‐sulfide‐based biomineralization in magnetotactic bacteria. Isme J 5: 1634 – 1640.
dc.identifier.citedreferenceBasso, O., Caumette, P., and Magot, M. ( 2005 ) Desulfovibrio putealis sp. nov., a novel sulfate‐reducing bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 55: 101 – 104.
dc.identifier.citedreferenceBattersby, N.S., Malcolm, S.J., Brown, C.M., and Stanley, S.O. ( 1985 ) Sulphate reduction in oxic and sub‐oxic North‐East Atlantic sediments. FEMS Microbiol Lett 31: 225 – 228.
dc.identifier.citedreferenceBattistuzzi, F.U., Feijao, A., and Hedges, S.B. ( 2004 ) A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol 4: 44.
dc.identifier.citedreferenceBaumgarten, A., Redenius, I., Kranczoch, J., and Cypionka, H. ( 2001 ) Periplasmic oxygen reduction by Desulfovibrio species. Arch Microbiol 176: 306 – 309.
dc.identifier.citedreferenceBazylinski, D.A., and Blakemore, R.P. ( 1983 ) Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 46: 1118 – 1124.
dc.identifier.citedreferenceBazylinski, D.A., and Frankel, R.B. ( 2004 ) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2: 217 – 230.
dc.identifier.citedreferenceBazylinski, D.A., and Moskowitz, B.M. ( 1997 ) Microbial biomineralization of magnetic iron minerals; microbiology, magnetism and environmental significance. Rev Miner Geochem 35: 181 – 223.
dc.identifier.citedreferenceBazylinski, D.A., Frankel, R.B., and Jannasch, H.W. ( 1988 ) Anaerobic magnetite production by a marine, magnetotactic bacterium. Nature 334: 518 – 519.
dc.identifier.citedreferenceBazylinski, D.A., Frankel, R.B., Heywood, B.R., Ahmadi, S., King, J.W., Donaghay, P.L., and Hanson, A.K. ( 1995 ) Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4). Appl Environ Microbiol 61: 3232 – 3239.
dc.identifier.citedreferenceBazylinski, D.A., Dean, A.J., Schüler, D., Phillips, E.J., and Lovley, D.R. ( 2000 ) N 2 ‐dependent growth and nitrogenase activity in the metal‐metabolizing bacteria, Geobacter and Magnetospirillum species. Environ Microbiol 2: 266 – 273.
dc.identifier.citedreferenceBazylinski, D.A., Dean, A.J., Williams, T.J., Long, L.K., Middleton, S.L., and Dubbels, B.L. ( 2004 ) Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV‐1 and MV‐2. Arch Microbiol 182: 373 – 387.
dc.identifier.citedreferenceBazylinski, D.A., Lefèvre, C.T., and Schüler, D. ( 2013 ) Magnetotactic bacteria. In The Prokaryotes. Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., and Thompson, F. (eds.). Berlin Heidelberg: Springer, pp. 453 – 494.
dc.identifier.citedreferenceBeijerinck, W.M. ( 1895 ) Uber Spirillum desulfuricans als ursache von sulfatreduction. Zentralb Bakteriol II 1: 104 – 114.
dc.identifier.citedreferenceBennet, M., McCarthy, A., Fix, D., Edwards, M.R., Repp, F., Vach, P., et al. ( 2014 ) Influence of magnetic fields on magneto‐aerotaxis. PLoS ONE 9: e101150.
dc.identifier.citedreferenceBlakemore, R.P., Maratea, D., and Wolfe, R.S. ( 1979 ) Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140: 720 – 729.
dc.identifier.citedreferenceBrendel, P.J., and Luther, G.W. ( 1995 ) Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O 2, and S(‐II) in porewaters of marine and freshwater sediments. Environ Sci Technol 29: 751 – 761.
dc.identifier.citedreferenceByrne, M.E., Ball, D.A., Guerquin‐Kern, J.L., Rouiller, I., Wu, T.D., Downing, K.H., et al. ( 2010 ) Desulfovibrio magneticus RS‐1 contains an iron‐ and phosphorus‐rich organelle distinct from its bullet‐shaped magnetosomes. Proc Natl Acad Sci U S A 107: 12263 – 12268.
dc.identifier.citedreferenceCanfield, D.E., and Des Marais, D.J. ( 1991 ) Aerobic sulfate reduction in microbial mats. Science 251: 1471 – 1473.
dc.identifier.citedreferenceChang, S.B.R., and Kirschvink, J.L. ( 1989 ) Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu Rev Earth Planet Sci 17: 169 – 195.
dc.identifier.citedreferenceCypionka, H. ( 2000 ) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54: 827 – 848.
dc.identifier.citedreferenceCypionka, H., Widdel, F., and Pfennig, N. ( 1985 ) Survival of sulfate‐reducing bacteria after oxygen stress, and growth in sulfate‐free oxygen‐sulfide gradients. FEMS Microbiol Lett 31: 39 – 45.
dc.identifier.citedreferenceDannenberg, S., Kroder, M., Dilling, W., and Cypionka, H. ( 1992 ) Oxidation of H 2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate reducing bacteria. Arch Microbiol 158: 93 – 99.
dc.identifier.citedreferenceDeLong, E.F., Frankel, R.B., and Bazylinski, D.A. ( 1993 ) Multiple evolutionary origins of magnetotaxis in bacteria. Science 259: 803 – 806.
dc.identifier.citedreferenceDevouard, B., Pósfai, M., Hua, X., Bazylinski, D.A., Frankel, R.B., and Buseck, P.R. ( 1998 ) Magnetite from magnetotactic bacteria: Size distributions and twinning. Am Miner 83: 1387 – 1398.
dc.identifier.citedreferenceDilling, W., and Cypionka, H. ( 1990 ) Aerobic respiration in sulfate‐reducing bacteria. FEMS Microbiol Lett 71: 123 – 127.
dc.identifier.citedreferenceDolla, A., Fournier, M., and Dermoun, Z. ( 2006 ) Oxygen defense in sulfate‐reducing bacteria. J Biotechnol 126: 87 – 100.
dc.identifier.citedreferenceFaivre, D., Menguy, N., Pósfai, M., and Schüler, D. ( 2008 ) Environmental parameters affect the physical properties of fast‐growing magnetosomes. Am Miner 93: 463 – 469.
dc.identifier.citedreferenceFrankel, R.B., Bazylinski, D.A., Johnson, M.S., and Taylor, B.L. ( 1997 ) Magneto‐aerotaxis in marine coccoid bacteria. Biophys J 73: 994 – 1000.
dc.identifier.citedreferenceGuo, F.F., Yang, W., Jiang, W., Geng, S., Peng, T., and Li, J.L. ( 2012 ) Magnetosomes eliminate intracellular reactive oxygen species in Magnetospirillum gryphiswaldense MSR‐1. Environ Microbiol 14: 1722 – 1729.
dc.identifier.citedreferenceHall, T. ( 1999 ) BioEdit: A user‐friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95 – 98.
dc.identifier.citedreferenceHardy, J.A., and Hamilton, W.A. ( 1981 ) The oxygen tolerance of sulfate‐reducing bacteria isolated from North Sea waters. Curr Microbiol 6: 259 – 262.
dc.identifier.citedreferenceHuber, H., Thomm, M., König, H., Thies, G., and Stetter, K.O. ( 1982 ) Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch Microbiol 132: 47 – 50.
dc.identifier.citedreferenceJogler, C., Wanner, G., Kolinko, S., Niebler, M., Amann, R., Petersen, N., et al. ( 2011 ) Conservation of proteobacterial magnetosome genes and structures in an uncultivated member of the deep‐branching Nitrospira phylum. Proc Natl Acad Sci U S A 108: 1134 – 1139.
dc.identifier.citedreferenceJohnson, M.S., Zhulin, I.G., Gapuzan, M.E.R., and Taylor, B.L. ( 1997 ) Oxygen‐dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol 179: 5598 – 5601.
dc.identifier.citedreferenceKolinko, S., Jogler, C., Katzmann, E., Wanner, G., Peplies, J., and Schüler, D. ( 2012 ) Single‐cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ Microbiol 14: 1709 – 1721.
dc.identifier.citedreferenceKrekeler, D., Sigalevich, P., Teske, A., Cypionka, H., and Cohen, Y. ( 1997 ) A sulfate‐reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167: 369 – 375.
dc.identifier.citedreferenceKuhnigk, T., Branke, J., Krekeler, D., Cypionka, H., and Konig, H. ( 1996 ) A feasible role of sulfate‐reducing bacteria in the termite gut. Syst Appl Microbiol 19: 139 – 149.
dc.identifier.citedreferenceLamrabet, O., Pieulle, L., Aubert, C., Mouhamar, F., Stocker, P., Dolla, A., and Brasseur, G. ( 2011 ) Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: Characterization of two membrane‐bound oxygen reductases. Microbiol Read Engl 157: 2720 – 2732.
dc.identifier.citedreferenceLane, D.J. ( 1991 ) 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics. Stackebrandt, E. and Goodfellow, M. (eds). New York: John Wiley & Sons, pp. 115 – 175.
dc.identifier.citedreferenceLefèvre, C.T., and Bazylinski, D.A. ( 2013 ) Ecology, diversity, and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 77: 497 – 526.
dc.identifier.citedreferenceLefèvre, C.T., Menguy, N., Abreu, F., Lins, U., Pósfai, M., Prozorov, T., et al. ( 2011a ) A cultured greigite‐producing magnetotactic bacterium in a novel group of sulfate‐reducing bacteria. Science 334: 1720 – 1723.
dc.identifier.citedreferenceLefèvre, C.T., Pósfai, M., Abreu, F., Lins, U., Frankel, R.B., and Bazylinski, D.A. ( 2011b ) Morphological features of elongated‐anisotropic magnetosome crystals in magnetotactic bacteria of the Nitrospirae phylum and the Deltaproteobacteria class. Earth Planet Sci Lett 312: 194 – 200.
dc.identifier.citedreferenceLefèvre, C.T., Viloria, N., Schmidt, M.L., Pósfai, M., Frankel, R.B., and Bazylinski, D.A. ( 2012 ) Novel magnetite‐producing magnetotactic bacteria belonging to the Gammaproteobacteria. Isme J 6: 440 – 450.
dc.identifier.citedreferenceLefèvre, C.T., Trubitsyn, D., Abreu, F., Kolinko, S., de Almeida, L.G.P., de Vasconcelos, A.T.R., et al. ( 2013 ) Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 15: 2267 – 2274.
dc.identifier.citedreferenceLefèvre, C.T., Bennet, M., Landau, L., Vach, P., Pignol, D., Bazylinski, D.A., et al. ( 2014 ) Diversity of magneto‐aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophys J 107: 527 – 538.
dc.identifier.citedreferenceLin, W., and Pan, Y. ( 2015 ) A putative greigite‐type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ Microbiol Rep 7: 237 – 242.
dc.identifier.citedreferenceLobo, S.A.L., Melo, A.M.P., Carita, J.N., Teixeira, M., and Saraiva, L.M. ( 2007 ) The anaerobe Desulfovibrio desulfuricans ATCC 27774 grows at nearly atmospheric oxygen levels. FEBS Lett 581: 433 – 436.
dc.identifier.citedreferenceLuther, G.W., Glazer, B.T., Ma, S., Trouwborst, R.E., Moore, T.S., Metzger, E., et al. ( 2008 ) Use of voltammetric solid‐state (micro)electrodes for studying biogeochemical processes: Laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Mar Chem 108: 221 – 235.
dc.identifier.citedreferenceNakazawa, H., Arakaki, A., Narita‐Yamada, S., Yashiro, I., Jinno, K., Aoki, N., et al. ( 2009 ) Whole genome sequence of Desulfovibrio magneticus strain RS‐1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19: 1801 – 1808.
dc.identifier.citedreferenceNewport, P. J., and Nedwell, D.B. ( 1988 ) The mechanisms of inhibition of Desulfovibrio and Desulfotomaculum species by selenate and molybdate. J Appl Bacteriol 65: 419 – 423.
dc.identifier.citedreferenceOldfield, F., and Wu, R.J. ( 2000 ) The magnetic properties of the recent sediments of Brothers Water, NW England. J Paleolimnol 23: 165 – 174.
dc.identifier.citedreferencePeck, H.D. ( 1959 ) The ATP dependent reduction of sulphate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc Natl Acad Sci U S A 45: 701 – 708.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.