Show simple item record

Polyvinyl chloride as a multimodal tissue‐mimicking material with tuned mechanical and medical imaging properties

dc.contributor.authorLi, Weisi
dc.contributor.authorBelmont, Barry
dc.contributor.authorGreve, Joan M.
dc.contributor.authorManders, Adam B.
dc.contributor.authorDowney, Brian C.
dc.contributor.authorZhang, Xi
dc.contributor.authorXu, Zhen
dc.contributor.authorGuo, Dongming
dc.contributor.authorShih, Albert
dc.date.accessioned2017-01-06T20:49:20Z
dc.date.available2017-12-01T21:54:11Zen
dc.date.issued2016-10
dc.identifier.citationLi, Weisi; Belmont, Barry; Greve, Joan M.; Manders, Adam B.; Downey, Brian C.; Zhang, Xi; Xu, Zhen; Guo, Dongming; Shih, Albert (2016). "Polyvinyl chloride as a multimodal tissue‐mimicking material with tuned mechanical and medical imaging properties." Medical Physics 43(10): 5577-5592.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135011
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstress relaxation
dc.subject.otherultrasonic imaging
dc.subject.otherviscoelasticity
dc.subject.othervisible spectra
dc.subject.otherElectrical, thermal, and mechanical properties of biological matter
dc.subject.otherElasticity and anelasticity, stress‐strain relations
dc.subject.otherFatigue, corrosion fatigue, embrittlement, cracking, fracture, and failure
dc.subject.otherFriction, lubrication, and wear
dc.subject.otherElastic properties
dc.subject.otherClinical applications
dc.subject.otherInvolving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
dc.subject.otherDiagnosis using ultrasonic, sonic or infrasonic waves
dc.subject.otherLubricating
dc.subject.otherBiological material, e.g. blood, urine; Haemocytometers
dc.subject.othertissue‐mimicking materials
dc.subject.otherPVC
dc.subject.othermultimodal
dc.subject.otherelastic modulus
dc.subject.otherultrasound
dc.subject.otherneedle
dc.subject.otherMaterials properties
dc.subject.otherFriction
dc.subject.otherElastic moduli
dc.subject.otherUltrasonography
dc.subject.otherHardness
dc.subject.otherTissues
dc.subject.otherPolymers
dc.subject.otherBiomedical modeling
dc.subject.otherhardness
dc.subject.otherbiological tissues
dc.subject.otherbiomechanics
dc.subject.otherbiomedical materials
dc.subject.otherbiomedical MRI
dc.subject.otherbiomedical optical imaging
dc.subject.otherbiomedical ultrasonics
dc.subject.otherdesign of experiments
dc.subject.otherelastic moduli
dc.subject.otherfriction
dc.subject.otherlubrication
dc.subject.otherneedles
dc.subject.otherpolymers
dc.subject.otherregression analysis
dc.titlePolyvinyl chloride as a multimodal tissue‐mimicking material with tuned mechanical and medical imaging properties
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumBiomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109
dc.contributor.affiliationumMechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109 and Biomedical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109
dc.contributor.affiliationumSchool of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China and Mechanical Engineering Department, University of Michigan, Ann Arbor, Michigan 48109
dc.contributor.affiliationotherSchool of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 110042, China
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135011/1/mp2649.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135011/2/mp2649_am.pdf
dc.identifier.doi10.1118/1.4962649
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceK. Yasukawa, T. Kunisue, K. Tsuta, Y. Shikinami, and T. Kondo, “ An ultrasound phantom with long‐term stability using a new biomimic soft gel material,” in IEEE Ultrasonics Symposium Proceedings ( IEEE, New York City, NY, 2007 ), pp. 2501 – 2502.
dc.identifier.citedreferenceM. D. Mitchell, H. L. Kundel, L. Axel, and P. M. Joseph, “ Agarose as a tissue equivalent phantom material for NMR imaging,” Magn. Reson. Imaging 4 ( 3 ), 263 – 266 ( 1986 ). 10.1016/0730‐725X(86)91068‐4
dc.identifier.citedreferenceM. Penders, S. Nilsson, L. Piculell, and B. Lindman, “ Clouding and diffusion of nonionic surfactants in agarose gels and solutions,” J. Phys. Chem. 97 ( 43 ), 11332 – 11338 ( 1993 ). 10.1021/j100145a035
dc.identifier.citedreferenceX. Zhang, B. Qiang, and J. Greenleaf, “ Comparison of the surface wave method and the indentation method for measuring the elasticity of gelatin phantoms of different concentrations,” Ultrasonics 51 ( 2 ), 157 – 164 ( 2011 ). 10.1016/j.ultras.2010.07.005
dc.identifier.citedreferenceR. J. Roesthuis, Y. R. J. van Veen, A. Jahya, and S. Misra, “ Mechanics of needle‐tissue interaction,” in IEEE/RSJ International Conference on Intelligent Robots and Systems ( IEEE, Stanford, CA, 2011 ), pp. 2557 – 2563.
dc.identifier.citedreferenceJ. C. Blechinger, E. L. Madsen, and G. R. Frank, “ Tissue‐mimicking gelatin‐agar gels for use in magnetic resonance imaging phantoms,” Med. Phys. 15 ( 4 ), 629 – 636 ( 1988 ). 10.1118/1.596219
dc.identifier.citedreferenceS. Smitha, P. Shajesh, P. Mukundan, T. D. R. Nair, and K. G. K. Warrier, “ Synthesis of biocompatible hydrophobic silica‐gelatin nano‐hybrid by sol–gel process,” Colloids Surf., B 55 ( 1 ), 38 – 43 ( 2007 ). 10.1016/j.colsurfb.2006.11.008
dc.identifier.citedreferenceD. F. Coutinho, S. V. Sant, H. Shin, J. T. Oliveira, M. E. Gomes, N. M. Neves, A. Khademhosseini, and R. L. Reis, “ Modified gellan gum hydrogels with tunable physical and mechanical properties,” Biomaterials 31 ( 29 ), 7494 – 7502 ( 2010 ). 10.1016/j.biomaterials.2010.06.035
dc.identifier.citedreferenceA. Asadian, M. R. Kermani, and R. V. Patel, “ A compact dynamic force model for needle‐tissue interaction,” in Annual International Conference of the IEEE Engineering in Medicine and Biology ( IEEE, Buenos Aires, Argentina, 2010 ), pp. 2292 – 2295.
dc.identifier.citedreferenceA. Asadian, R. V. Patel, and M. R. Kermani, “ Compensation for relative velocity between needle and soft tissue for friction modeling in needle insertion,” in Annual International Conference of the IEEE Engineering in Medicine and Biology ( IEEE, San Diego, CA, 2012 ), pp. 960 – 963.
dc.identifier.citedreferenceR. L. King, Y. Liu, S. Maruvada, B. A. Herman, K. A. Wear, and G. R. Harris, “ Development and characterization of a tissue‐mimicking material for high‐intensity focused ultrasound,” IEEE Trans. Ultrason. Eng. 58 ( 7 ), 1397 – 1405 ( 2011 ). 10.1109/TUFFC.2011.1959
dc.identifier.citedreferenceK. J. M. Surry, H. J. B. Austin, A. Fenster, and T. M. Peters, “ Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol. 49 ( 24 ), 5529 – 5546 ( 2004 ). 10.1088/0031‐9155/49/24/009
dc.identifier.citedreferenceW. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, and S. Manohar, “ Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16 ( 7 ), 075002 ( 2011 ). 10.1117/1.3597616
dc.identifier.citedreferenceK. C. Chu and B. K. Rutt, “ Polyvinyl alcohol cryogel: An ideal phantom material for MR studies of arterial flow and elasticity,” Magn. Reson. Med. 37 ( 2 ), 314 – 319 ( 1997 ). 10.1002/mrm.1910370230
dc.identifier.citedreferenceZ. Wang, B. Huang, X. Qin, X. Zhang, P. Wang, J. Wei, J. Zhan, X. Jing, H. Liu, Z. Xu, H. Cheng, X. Wang, and Z. Zheng, “ Growth of high transmittance vertical aligned ZnO nanorod arrays with polyvinyl alcohol by hydrothermal method,” Mater. Lett. 63 ( 1 ), 130 – 132 ( 2009 ). 10.1016/j.matlet.2008.09.042
dc.identifier.citedreferenceM. Kita, Y. Ogura, Y. Honda, S. H. Hyon, W. Cha II, and Y. Ikada, “ Evaluation of polyvinyl alcohol hydrogel as a soft contact lens material,” Graefes Arch. Clin. Exp. Ophthalmol. 228 ( 6 ), 533 – 537 ( 1990 ). 10.1007/BF00918486
dc.identifier.citedreferenceS. Misra, K. B. Reed, B. W. Schafer, K. T. Ramesh, and A. M. Okamura, “ Mechanics of flexible needles robotically steered through soft tissue,” Int. J. Rob. Res. 29 ( 13 ), 1640 – 1660 ( 2010 ). 10.1177/0278364910369714
dc.identifier.citedreferenceR. Nyman, A. Ericsson, A. Hemmingsson, B. Jung, G. Sperber, and K. A. Thuomas, “ T 1, T 2, and relative proton density at 0.35 T for spleen, liver, adipose tissue, and vertebral body: Normal values,” Magn. Reson. Med. 3, 901 – 910 ( 1986 ). 10.1002/mrm.1910030610
dc.identifier.citedreferenceM. Carbone, S. Condino, L. Mattei, P. Forte, V. Ferrari, and F. Mosca, “ Anthropomorphic ultrasound elastography phantoms—Characterization of silicone materials to build breast elastography phantoms,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, San Diego, CA, 2012 ), pp. 492 – 494.
dc.identifier.citedreferenceC. L. Cheung, T. Looi, J. Drake, and P. C. W. Kim, “ Magnetic resonance imaging properties of multimodality anthropomorphic silicone rubber phantoms for validating surgical robots and image guided therapy systems,” Proc. SPIE 8316, 83161X ( 2012 ). 10.1117/12.908274
dc.identifier.citedreferenceD. C. Goldstein, H. L. Kundel, M. E. Daube‐Witherspoon, L. E. Thibault, and E. J. Goldstein, “ A silicone gel phantom suitable for multimodality imaging,” Invest. Radiol. 22 ( 2 ), 153 – 157 ( 1987 ). 10.1097/00004424‐198702000‐00013
dc.identifier.citedreferenceG. M. Bernacca, B. O’Connor, D. F. Williams, and D. J. Wheatley, “ Hydrodynamic function of polyurethane prosthetic heart valves: Influences of Young’s modulus and leaflet thickness,” Biomaterials 23 ( 1 ), 45 – 50 ( 2002 ). 10.1016/S0142‐9612(01)00077‐1
dc.identifier.citedreferenceB.‐S. Chiou and P. E. Schoen, “ Effects of crosslinking on thermal and mechanical properties of polyurethanes,” J. Appl. Polym. Sci. 83 ( 1 ), 212 – 223 ( 2002 ). 10.1002/app.10056
dc.identifier.citedreferenceD. Fuerst, D. Stephan, P. Augat, and A. Schrempf, “ Foam phantom development for artificial vertebrae used for surgical training,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, San Diego, CA, 2012 ), pp. 5773 – 5776.
dc.identifier.citedreferenceW. D. D’Souza, E. L. Madsen, O. Unal, K. K. Vigen, G. R. Frank, and B. R. Thomadsen, “ Tissue mimicking materials for a multi‐imaging modality prostate phantom,” Med. Phys. 28 ( 4 ), 688 – 700 ( 2001 ). 10.1118/1.1354998
dc.identifier.citedreferenceE. L. Madsen, W. D. D’Souza, and G. R. Frank, “ Multi‐imaging modality tissue mimicking materials for imaging phantoms,” U.S. patent 6635486(November 20, 2001 ).
dc.identifier.citedreferenceS. Zhou, L. Wu, J. Sun, and W. Shen, “ The change of the properties of acrylic‐based polyurethane via addition of nano‐silica,” Prog. Org. Coatings 45 ( 1 ), 33 – 42 ( 2002 ). 10.1016/S0300‐9440(02)00085‐1
dc.identifier.citedreferenceM. M. Jalili, S. Moradian, H. Dastmalchian, and A. Karbasi, “ Investigating the variations in properties of 2‐pack polyurethane clear coat through separate incorporation of hydrophilic and hydrophobic nano‐silica,” Prog. Org. Coatings 59 ( 1 ), 81 – 87 ( 2007 ). 10.1016/j.porgcoat.2007.01.018
dc.identifier.citedreferenceX. Liang, A. L. Oldenburg, V. Crecea, S. Kalyanam, M. F. Insana, and S. A. Boppart, “ Modeling and measurement of tissue elastic moduli using optical coherence elastography,” Proc. SPIE 6858, 685803 – 685808 ( 2008 ). 10.1117/12.760779
dc.identifier.citedreferenceV. P. Mathews, A. D. Elster, P. B. Barker, B. L. Buff, J. A. Haller, and C. M. Greven, “ Intraocular silicone oil: In vitro and in vivo MR and CT characteristics,” Am. J. Neuroradiol. 15 ( 2 ), 343 – 347 ( 1994 ).
dc.identifier.citedreferenceT.‐K. Shih, C.‐F. Chen, J.‐R. Ho, and F.‐T. Chuang, “ Fabrication of PDMS (polydimethylsiloxane) microlens and diffuser using replica molding,” Microelectron. Eng. 83 ( 11–12 ), 2499 – 2503 ( 2006 ). 10.1016/j.mee.2006.05.006
dc.identifier.citedreferenceG. S. Rajan, G. S. Sur, J. E. Mark, D. W. Schaefer, and G. Beaucage, “ Preparation and characterization of some unusually transparent poly(dimethylsiloxane) nanocomposites,” J. Polym. Sci., Part B: Polym. Phys. 41 ( 16 ), 1897 – 1901 ( 2003 ). 10.1002/polb.10565
dc.identifier.citedreferenceE. J. Chen, J. Novakofski, W. Kenneth Jenkins, and W. D. O’Brien, “ Young’s modulus measurements of soft tissues with application to elasticity imaging,” IEEE Trans. Ultrason. Eng. 43 ( 1 ), 191 – 194 ( 1996 ). 10.1109/58.484478
dc.identifier.citedreferenceW. C. Yeh, P. C. Li, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and H. L. Po, “ Elastic modulus measurements of human liver and correlation with pathology,” Ultrasound Med. Biol. 28 ( 4 ), 467 – 474 ( 2002 ). 10.1016/S0301‐5629(02)00489‐1
dc.identifier.citedreferenceY. Kobayashi, T. Sato, and M. G. Fujie, “ Modeling of friction force based on relative velocity between liver tissue and needle for needle insertion simulation plates needle,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society ( IEEE, Minneapolis, MN, 2009 ), pp. 5274 – 5278.
dc.identifier.citedreferenceA. Asadian, R. V. Patel, and M. R. Kermani, “ Dynamics of translational friction in needle‐tissue interaction during needle insertion,” Ann. Biomed. Eng. 42 ( 1 ), 73 – 85 ( 2014 ). 10.1007/s10439‐013‐0892‐5
dc.identifier.citedreferenceJ. C. Bamber and C. R. Hill, “ Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature,” Ultrasound Med. Biol. 5 ( 2 ), 149 – 157 ( 1979 ). 10.1016/0301‐5629(79)90083‐8
dc.identifier.citedreferenceJ. C. Bamber and C. R. Hill, “ Acoustic properties of normal and cancerous human liver‐I. Dependence on pathological condition,” Ultrasound Med. Biol. 7 ( 2 ), 121 – 133 ( 1981 ). 10.1016/0301‐5629(81)90001‐6
dc.identifier.citedreferenceC. C. Dierickx, M. C. Grossman, W. A. Farinelli, and R. R. Anderson, “ Permanent hair removal by normal‐mode ruby laser,” Arch. Dermatol. 134 ( 7 ), 837 – 842 ( 1998 ). 10.1001/archderm.134.7.837
dc.identifier.citedreferenceG. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, and R. M. Henkelman, “ T 1, T 2 relaxation and magnetization transfer in tissue at 3T,” Magn. Reson. Med. 54 ( 3 ), 507 – 512 ( 2005 ). 10.1002/mrm.20605
dc.identifier.citedreferenceZ. Taylor and K. Miller, “ Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus,” J. Biomech. 37 ( 8 ), 1263 – 1269 ( 2004 ). 10.1016/j.jbiomech.2003.11.027
dc.identifier.citedreferenceF. Casanova, P. R. Carney, and M. Sarntinoranont, “ In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain,” J. Neurosci. Methods 237, 79 – 89 ( 2014 ). 10.1016/j.jneumeth.2014.08.012
dc.identifier.citedreferenceB. Fischl, D. H. Salat, A. J. W. Van Der Kouwe, N. Makris, F. Ségonne, B. T. Quinn, and A. M. Dale, “ Sequence‐independent segmentation of magnetic resonance images,” NeuroImage 23 ( Suppl.1 ), 69 – 84 ( 2004 ). 10.1016/j.neuroimage.2004.07.016
dc.identifier.citedreferenceJ. T. Iivarinen, R. K. Korhonen, and J. S. Jurvelin, “ Experimental and numerical analysis of soft tissue stiffness measurement using manual indentation device—Significance of indentation geometry and soft tissue thickness,” Skin Res. Technol. 20 ( 3 ), 347 – 354 ( 2014 ). 10.1111/srt.12125
dc.identifier.citedreferenceB. A. Bullen, F. Quaade, E. Olesen, and S. A. Lund, “ Ultrasonic reflections used for measuring subcutaneous fat in humans,” Hum. Biol. 37 ( 4 ), 375 – 384 ( 1965 ).
dc.identifier.citedreferenceR. L. Errabolu, C. M. Sehgal, R. C. Bahn, and J. F. Greenleaf, “ Measurement of ultrasonic nonlinear parameter in excised fat tissues,” Ultrasound Med. Biol. 14 ( 2 ), 137 – 146 ( 1988 ). 10.1016/0301‐5629(88)90181‐0
dc.identifier.citedreferenceR. L. Ehman, B. O. Kjos, H. Hricak, R. C. Brasch, and C. B. Higgins, “ Relative intensity of abdominal organs in MR images,” J. Comput. Assist. Tomogr. 9 ( 2 ), 315 – 319 ( 1985 ). 10.1097/00004728‐198503000‐00016
dc.identifier.citedreferenceB. C. W. Kot, Z. J. Zhang, A. W. C. Lee, V. Y. F. Leung, and S. N. Fu, “ Elastic modulus of muscle and tendon with shear wave ultrasound elastography: Variations with different technical settings,” PLoS One 7 ( 8 ), e44348 ( 2012 ). 10.1371/journal.pone.0044348
dc.identifier.citedreferenceY. Fukushima and K. Naemura, “ Estimation of the friction force during the needle insertion using the disturbance observer and the recursive least square,” ROBOMECH J. 1 ( 1 ), 1 – 8 ( 2014 ). 10.1186/s40648‐014‐0014‐7
dc.identifier.citedreferenceB. M. Ahn, J. Kim, L. Ian, K. H. Rha, and H. J. Kim, “ Mechanical property characterization of prostate cancer using a minimally motorized indenter in an ex vivo indentation experiment,” Urology 76 ( 4 ), 1007 – 1011 ( 2010 ). 10.1016/j.urology.2010.02.025
dc.identifier.citedreferenceX. Wang, J. Wang, Y. Liu, H. Zong, X. Che, W. Zheng, F. Chen, Z. Zhu, D. Yang, and X. Song, “ Alterations in mechanical properties are associated with prostate cancer progression,” Med. Oncol. 31:876 ( 2014 ). 10.1007/s12032‐014‐0876‐9
dc.identifier.citedreferenceT. Podder, D. Clark, J. Sherman, D. Fuller, E. Messing, D. Rubens, J. Strang, R. Brasacchio, L. Liao, W.‐S. Ng, and Y. Yu, “ Vivo motion and force measurement of surgical needle intervention during prostate brachytherapy,” Med. Phys. 33 ( 8 ), 2915 – 2922 ( 2006 ). 10.1118/1.2218061
dc.identifier.citedreferenceL. Kjaer, C. Thomsen, P. Iversen, and O. Henriksen, “ In vivo estimation of relaxation processes in benign hyperplasia and carcinoma of the prostate gland by magnetic resonance imaging,” Magn. Reson. Imaging 5, 23 – 30 ( 1987 ). 10.1016/0730‐725X(87)90480‐2
dc.identifier.citedreferenceD. C. Montgometry, Design and Analysis of Experiments ( John Wiley & Sons, New Jersey, 2008 ).
dc.identifier.citedreferenceH. Mehrabian and A. Samani, “ Constrained hyperelastic parameters reconstruction of PVA (polyvinyl alcohol) phantom undergoing large deformation,” Proc. SPIE 7261, 72612G ( 2009 ). 10.1117/12.813871
dc.identifier.citedreferenceASTM, International Standard Test Method for Rubber Property—Durometer Hardness ASTM Standard D2240–05 ( ASTM, West Conshohocken, 2015).
dc.identifier.citedreferenceB. J. Briscoe, K. S. Sebastian, and M. J. Adams, “ The effect of indenter geometry on the elastic response to indentation,” J. Phys. D. Appl. Phys. 27 ( 6 ), 1156 – 1162 ( 1999 ). 10.1088/0022‐3727/27/6/013
dc.identifier.citedreferenceD. J. Naylor, “ Stresses in nearly incompressible materials by finite elements with application to the calculation of excess pore pressures,” Int. J. Numer. Methods Eng. 8, 443 – 460 ( 1974 ). 10.1002/nme.1620080302
dc.identifier.citedreferenceJ. D. Ferry, Viscoelastic Properties of Polymers ( Wiley, New York, NY, 1980 ).
dc.identifier.citedreferenceW. Xu and J. J. Kaufman, “ Diffraction correction methods for insertion ultrasound attenuation estimation,” IEEE Trans. Biomed. Eng. 40 ( 6 ), 563 – 570 ( 1993 ). 10.1109/10.237676
dc.identifier.citedreferenceK. Sharma, Optics ( Academic, 2006 ).
dc.identifier.citedreferenceR. J. Dickinson, A. S. Hall, A. J. Hind, and I. R. Young, “ Measurement of changes in tissue temperature using MR imaging,” J. Comput. Assist. Tomogr. 10 ( 3 ), 468 – 472 ( 1986 ). 10.1097/00004728‐199005000‐00021
dc.identifier.citedreferenceR. S. Lakes, Viscoelastic Materials ( Cambridge University Press, New York, NY, 2009 ).
dc.identifier.citedreferenceL. M. Hopkins, J. T. Kelly, A. S. Wexler, and A. K. Prasad, “ Particle image velocimetry measurements in complex geometries,” Exp. Fluids 29 ( 1 ), 91 – 95 ( 2000 ). 10.1007/s003480050430
dc.identifier.citedreferenceY. Tang, S. Lee, M. D. Nelson, S. Richard, and R. A. Moats, “ Adipose segmentation in small animals at 7T: A preliminary study,” BMC Genomics 11 (Suppl 3):S9 (2010). 10.1186/1471‐2164‐11‐s3‐s9
dc.identifier.citedreferenceW. D. Rooney, G. Johnson, X. Li, E. R. Cohen, S. G. Kim, K. Ugurbil, and C. S. Springer, “ Magnetic field and tissue dependencies of human brain longitudinal 1H 2 O relaxation in vivo,” Magn. Reson. Med. 57 ( 2 ), 308 – 318 ( 2007 ). 10.1002/mrm.21122
dc.identifier.citedreferenceM. A. Korteweg, J. J. M. Zwanenburg, P. J. Van Diest, M. A. A. J. Van Den Bosch, P. R. Luijten, R. Van Hillegersberg, W. P. T. M. Mali, and W. B. Veldhuis, “ Characterization of ex vivo healthy human axillary lymph nodes with high resolution 7 Tesla MRI,” Eur. Radiol. 21 ( 2 ), 310 – 317 ( 2011 ). 10.1007/s00330‐010‐1915‐3
dc.identifier.citedreferenceJ. Dankelman, “ Surgical simulator design and development,” World J. Surg. 32 ( 2 ), 149 – 155 ( 2008 ). 10.1007/s00268‐007‐9150‐z
dc.identifier.citedreferenceK. J. Domuracki, C. J. Moule, H. Owen, G. Kostandoff, and J. L. Plummer, “ Learning on a simulator does transfer to clinical practice,” Resuscitation 80 ( 3 ), 346 – 349 ( 2009 ). 10.1016/j.resuscitation.2008.10.036
dc.identifier.citedreferenceA. Liu, F. Tendick, K. Cleary, and C. Kaufmann, “ A survey of surgical simulation: Applications, technology, and education,” Presence Teleoperators Virtual Environ. 12 ( 6 ), 599 – 614 ( 2003 ). 10.1162/105474603322955905
dc.identifier.citedreferenceM. Srinivasan, J. C. Hwang, D. West, and P. M. Yellowlees, “ Assessment of clinical skills using simulator technologies,” Acad. Psychiatry 30 ( 6 ), 505 – 515 ( 2006 ). 10.1176/appi.ap.30.6.505
dc.identifier.citedreferenceM. O. Culjat, D. Goldenberg, P. Tewari, and R. S. Singh, “ A review of tissue substitutes for ultrasound imaging,” Ultrasound Med. Biol. 36 ( 6 ), 861 – 873 ( 2010 ). 10.1016/j.ultrasmedbio.2010.02.012
dc.identifier.citedreferenceR. Cao, Z. Huang, T. Varghese, and G. Nabi, “ Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: A validation study,” Med. Phys. 40 ( 2 ), 022903 (9pp.) ( 2013 ). 10.1118/1.4773315
dc.identifier.citedreferenceT. Yoshida, K. Tanaka, T. Kondo, K. Yasukawa, N. Miyamoto, M. Taniguchi, and Y. Shikinami, “ Tissue‐mimicking materials using segmented polyurethane gel and their acoustic properties,” Jpn. J. Appl. Phys., Part 1 51 ( 7S ), 07GF17 ( 2012 ). 10.7567/JJAP.51.07GF17
dc.identifier.citedreferenceE. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “ Tissue‐mimicking agar/gelatin materials for use in heterogeneous elastography phantoms,” Phys. Med. Biol. 50 ( 23 ), 5597 – 5618 ( 2005 ). 10.1088/0031‐9155/50/23/013
dc.identifier.citedreferenceS. J.‐S. Chen, P. Hellier, M. Marchal, J.‐Y. Gauvrit, R. Carpentier, X. Morandi, and D. L. Collins, “ An anthropomorphic polyvinyl alcohol brain phantom based on Colin27 for use in multimodal imaging,” Med. Phys. 39 ( 1 ), 554 – 561 ( 2012 ). 10.1118/1.3673069
dc.identifier.citedreferenceM. Solanki and V. Raja, “ Haptic based augmented reality simulator for training clinical breast examination,” in IEEE EMBS Conference on Biomedical Engineering and Sciences ( IEEE, Kuala Lumpur, Malaysia, 2010 ), pp. 265 – 269.
dc.identifier.citedreferenceY. Wang, B. L. Tai, H. Yu, and A. J. Shih, “ Silicone‐based tissue‐mimicking phantom for needle insertion simulation,” J. Med. Devices 8 ( 2 ), 021001 ( 2014 ). 10.1115/1.4026508
dc.identifier.citedreferenceJ. Oudry, C. Bastard, V. Miette, R. Willinger, and L. Sandrin, “ Copolymer‐in‐oil phantom materials for elastography,” Ultrasound Med. Biol. 35 ( 7 ), 1185 – 1197 ( 2009 ). 10.1016/j.ultrasmedbio.2009.01.012
dc.identifier.citedreferenceA. S. Kashif, T. F. Lotz, M. D. McGarry, A. J. Pattison, and J. G. Chase, “ Silicone breast phantoms for elastographic imaging evaluation,” Med. Phys. 40 ( 6 ), 063503 (11pp.) ( 2013 ). 10.1118/1.4805096
dc.identifier.citedreferenceJ. Fromageau, J.‐L. Gennisson, C. Schmitt, R. L. Maurice, R. Mongrain, and G. Cloutier, “ Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings,” IEEE Trans. Ultrason. Eng. 54 ( 3 ), 498 – 509 ( 2007 ). 10.1109/TUFFC.2007.273
dc.identifier.citedreferenceM. M. Nguyen, S. Zhou, J.‐L. Robert, V. Shamdasani, and H. Xie, “ Development of oil‐in‐gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography,” Ultrasound Med. Biol. 40 ( 1 ), 168 – 176 ( 2014 ). 10.1016/j.ultrasmedbio.2013.08.020
dc.identifier.citedreferenceN. Hungr, J.‐A. Long, V. Beix, and J. Troccaz, “ A realistic deformable prostate phantom for multimodal imaging and needle‐insertion procedures,” Med. Phys. 39 ( 4 ), 2031 – 2041 ( 2012 ). 10.1118/1.3692179
dc.identifier.citedreferenceM. K. Chmarra, R. Hansen, R. Marvik, and T. Lango, “ Multimodal phantom of liver tissue,” PLoS One 8 ( 5 ), e64180 ( 2013 ). 10.1371/journal.pone.0064180
dc.identifier.citedreferenceD. W. Rickey, P. A. Picot, D. A. Christopher, and A. Fenster, “ A wall‐less vessel phantom for doppler ultrasound studies,” Ultrasound Med. Biol. 21 ( 9 ), 1163 – 1176 ( 1995 ). 10.1016/0301‐5629(95)00044‐5
dc.identifier.citedreferenceC. L. de Korte, E. I. Cespedes, A. F. W. van der Steen, and C. T. Lancee, “ Intravascular elasticity imaging using ultrasound: Feasibility studies in phantoms,” Ultrasound Med. Biol. 23 ( 5 ), 735 – 746 ( 1997 ). 10.1016/S0301‐5629(97)00004‐5
dc.identifier.citedreferenceE. L. Madsen, E. Kelly‐Fry, and G. R. Frank, “ Anthropomorphic phantoms for assessing systems used in ultrasound imaging of the compressed breast,” Ultrasound Med. Biol. 14 ( 1 ), 183 – 201 ( 1988 ). 10.1016/0301‐5629(88)90061‐0
dc.identifier.citedreferenceI. Mano, H. Goshima, M. Nambu, and M. Iio, “ New polyvinyl alcohol gel material for MRI phantoms,” Magn. Reson. Med. 3 ( 6 ), 921 – 926 ( 1986 ). 10.1002/mrm.1910030612
dc.identifier.citedreferenceN. J. Lawson and J. Wu, “ Three‐dimensional particle image velocimetry: Experimental error analysis of a digital angular stereoscopic system,” Meas. Sci. Technol. 8 ( 12 ), 1455 – 1464 ( 1997 ). 10.1088/0957‐0233/8/12/009
dc.identifier.citedreferenceR. K. Chen and A. J. Shih, “ Multi‐modality gellan gum‐based tissue‐mimicking phantom with targeted mechanical, electrical, and thermal properties,” Phys. Med. Biol. 58 ( 16 ), 5511 – 5525 ( 2013 ). 10.1088/0031‐9155/58/16/5511
dc.identifier.citedreferenceB. W. Pogue and M. S. Patterson, “ Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11 ( 4 ), 041102 ( 2006 ). 10.1117/1.2335429
dc.identifier.citedreferenceG. M. Spirou, A. A. Oraevsky, I. A. Vitkin, and W. M. Whelan, “ Optical and acoustic properties at 1064 nm of polyvinyl chloride‐plastisol for use as a tissue phantom in biomedical optoacoustics,” Phys. Med. Biol. 50 ( 14 ), N141 – N153 ( 2005 ). 10.1088/0031‐9155/50/14/N01
dc.identifier.citedreferenceI. M. de Carvalho, R. L. Q. Basto, A. F. C. Infantosi, M. A. von Krüger, and W. C. A. Pereira, “ Breast ultrasound imaging phantom to mimic malign lesion characteristics,” Phys. Procedia 3 ( 1 ), 421 – 426 ( 2010 ). 10.1016/j.phpro.2010.01.055
dc.identifier.citedreferenceJ. K. Tsou, J. Liu, A. I. Barakat, and M. F. Insana, “ Role of ultrasonic shear rate estimation errors in assessing inflammatory response and vascular risk,” Ultrasound Med. Biol. 34 ( 6 ), 963 – 972 ( 2008 ). 10.1016/j.ultrasmedbio.2007.11.010
dc.identifier.citedreferenceL. Maggi, G. Cortela, M. V. Krüger, C. A. Negreira, and W. C. de Albuquerque Pereira, “ Ultrasonic attenuation and speed in phantoms made of PVCP and evaluation of acoustic and thermal properties of ultrasonic phantoms made of polyvinyl chloride plastisol (PVCP),” in Proceedings of International Work‐Conference on Bioinformatics and Biomedical Engineering ( Springer, Granada, Spain, 2013 ), pp. 233 – 241.
dc.identifier.citedreferenceH. Tanoue, Y. Hagiwara, K. Kobayashi, and Y. Saijo, “ Ultrasonic tissue characterization of prostate biopsy tissues by ultrasound speed microscope,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS ( IEEE, Boston, MA, 2011 ), pp. 8499 – 8502.
dc.identifier.citedreferenceM. O. Woods and C. A. Miles, “ Ultrasound speed and attenuation in homogenates of bovine skeletal muscle,” Ultrasonics 24 ( 5 ), 260 – 266 ( 1986 ). 10.1016/0041‐624X(86)90103‐4
dc.identifier.citedreferenceF. W. Kremkau, R. W. Barnes, and C. P. McGraw, “ Ultrasonic attenuation and propagation speed in normal human brain,” J. Acoust. Soc. Am. 70 ( 1 ), 29 – 38 ( 1981 ). 10.1121/1.386578
dc.identifier.citedreferenceJ. C. Bamber, “ Ultrasonic attenuation in fress human tissues,” Ultrasonics 19, 187 – 188 ( 1981 ). 10.1016/0041‐624X(81)90101‐3
dc.identifier.citedreferenceD. L. Folds, “ Speed of sound and transmission loss in silicone rubbers at ultrasonic frequencies,” J. Acoust. Soc. Am. 56 ( 4 ), 1295 – 1296 ( 1974 ). 10.1121/1.1903422
dc.identifier.citedreferenceA. Ashead and S. M. Lindsay, “ Brillouin scattering from polyurethane gels,” Polymer 23, 1884 – 1888 ( 1982 ). 10.1016/0032‐3861(82)90212‐9
dc.identifier.citedreferenceR. L. Cook and D. Kendrick, “ Speed of sound of six PRC polyurethane materials as a function of temperature,” J. Acoust. Soc. Am. 70 ( 2 ), 639 – 640 ( 1981 ). 10.1121/1.386759
dc.identifier.citedreferenceK. A. Ross and M. G. Scanlon, “ Analysis of the elastic modulus of agar gel by indentation,” J. Texture Stud. 30 ( 1 ), 17 – 27 ( 1999 ). 10.1111/j.1745‐4603.1999.tb00199.x
dc.identifier.citedreferenceV. T. Nayar, J. D. Weiland, C. S. Nelson, and A. M. Hodge, “ Elastic and viscoelastic characterization of agar,” J. Mech. Behav. Biomed. Mater. 7, 60 – 68 ( 2012 ). 10.1016/j.jmbbm.2011.05.027
dc.identifier.citedreferenceT. Z. Pavan, E. L. Madsen, G. R. Frank, A. Adilton O Carneiro, and T. J. Hall, “ Nonlinear elastic behavior of phantom materials for elastography,” Phys. Med. Biol. 55 ( 9 ), 2679 – 2692 ( 2010 ). 10.1088/0031‐9155/55/9/017
dc.identifier.citedreferenceC. Sun, S. D. Pye, J. E. Browne, A. Janeczko, B. Ellis, M. B. Butler, V. Sboros, A. J. W. Thomson, M. P. Brewin, C. H. Earnshaw, and C. M. Moran, “ The speed of sound and attenuation of an IEC agar‐based tissue‐mimicking material for high frequency ultrasound applications,” Ultrasound Med. Biol. 38 ( 7 ), 1262 – 1270 ( 2012 ). 10.1016/j.ultrasmedbio.2012.02.030
dc.identifier.citedreferenceK. Manickam, R. R. Machireddy, and S. Seshadri, “ Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques,” J. Mech. Behav. Biomed. Mater. 35, 132 – 143 ( 2014 ). 10.1016/j.jmbbm.2014.03.017
dc.identifier.citedreferenceR. F. Smith, B. K. Rutt, and D. W. Holdsworth, “ Anthropomorphic carotid bifurcation phantom for MRI applications,” J. Magn. Reson. Imaging 10 ( 4 ), 533 – 544 ( 1999 ). 10.1002/(SICI)1522‐2586(199910)10:4¡533::AID‐JMRI6¿3.0.CO;2‐Z
dc.identifier.citedreferenceR. Mathur‐De Vre, R. Grimee, F. Parmentier, and J. Binet, “ The use of agar gel as a basic reference material for calibrating relaxation times and imaging parameters,” Magn. Reson. Med. 2 ( 2 ), 176 – 179 ( 1985 ). 10.1002/mrm.1910020208
dc.identifier.citedreferenceE. Raphael, C. O. Avellaneda, B. Manzolli, and A. Pawlicka, “ Agar‐based films for application as polymer electrolytes,” Electrochim. Acta 55 ( 4 ), 1455 – 1459 ( 2010 ). 10.1016/j.electacta.2009.06.010
dc.identifier.citedreferenceB. Luo, R. Yang, P. Ying, M. Awad, M. Choti, and R. Taylor, “ Elasticity and echogenicity analysis of agarose phantoms mimicking liver tumors,” in Proceedings of the IEEE 32nd Annual Northeast Bioengineering Conference ( IEEE, Easton, PA, 2006 ), pp. 81 – 82.
dc.identifier.citedreferenceV. Normand, D. L. Lootens, E. Amici, K. P. Plucknett, and P. Aymard, “ New insight into agarose gel mechanical properties,” Biomacromolecules 1 ( 4 ), 730 – 738 ( 2000 ). 10.1021/bm005583j
dc.identifier.citedreferenceS. A. Lopez‐Haro, C. J. Trujillo, A. Vera, and L. Leija, “ An agarose based phantom embedded in an in vitro liver tissue to simulate tumors: First experience,” in Pan American Health Care Exchanges ( IEEE, Rio de Janeiro, Brazil, 2011 ), pp. 233 – 236.
dc.identifier.citedreferenceS. A. Lopez‐Haro, I. Bazan‐Trujillo, L. Leija‐Salas, and A. Vera‐Hernandez, “ Ultrasound propagation speed measurement of mimicking soft tissue phantoms based on agarose in the range of 25 °C and 50 °C,” in 5th International Conference on Electrical Engineering, Computing Science and Automatic Control ( IEEE, Mexico City, Mexico, 2008 ), pp. 192 – 195.
dc.identifier.citedreferenceH. I. Litt and A. S. Brody, “ BaSO 4 ‐loaded agarose: A construction material for multimodality imaging phantoms,” Acad. Radiol. 8 ( 5 ), 377 – 383 ( 2001 ). 10.1016/S1076‐6332(03)80544‐5
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.