Show simple item record

Estimation of cold plasma outflow during geomagnetic storms

dc.contributor.authorHaaland, S.
dc.contributor.authorEriksson, A.
dc.contributor.authorAndré, M.
dc.contributor.authorMaes, L.
dc.contributor.authorBaddeley, L.
dc.contributor.authorBarakat, A.
dc.contributor.authorChappell, R.
dc.contributor.authorEccles, V.
dc.contributor.authorJohnsen, C.
dc.contributor.authorLybekk, B.
dc.contributor.authorLi, K.
dc.contributor.authorPedersen, A.
dc.contributor.authorSchunk, R.
dc.contributor.authorWelling, D.
dc.date.accessioned2017-01-06T20:49:28Z
dc.date.available2017-01-06T20:49:28Z
dc.date.issued2015-12
dc.identifier.citationHaaland, S.; Eriksson, A.; André, M. ; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D. (2015). "Estimation of cold plasma outflow during geomagnetic storms." Journal of Geophysical Research: Space Physics 120(12): 10,622-10,639.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/135018
dc.description.abstract Low‐energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near‐Earth region during geomagnetic storms.Key PointsCold ion outflow increases significantly during geomagnetic stormsThe observed increase in cold ion flux is a result of centrifugal accelerationTransport of ions of ionospheric origin to the plasma sheet increases during storms
dc.publisherWiley Periodicals, Inc.
dc.publisherAGU
dc.subject.otherwake
dc.subject.otherIon outflow
dc.titleEstimation of cold plasma outflow during geomagnetic storms
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135018/1/jgra52247.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135018/2/jgra52247_am.pdf
dc.identifier.doi10.1002/2015JA021810
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRiedler, W., et al. ( 1997 ), Active spacecraft potential control, Space Sci. Review, 79, 271 – 302.
dc.identifier.citedreferenceMoore, T., M. Chandler, C. Chappell, R. Comfort, P. Craven, D. Delcourt, H. Elliott, B. Giles, J. Horwitz, C. Pollock, and Y.‐J. Su ( 1999 ), Polar/TIDE results on polar outflows, in Sun‐Earth Plasma Connections, Geophys. Monogr. Ser., vol. 109, edited by J. Burch and R. L. Carovillano, pp. 87 – 101, AGU, Washington, D. C.
dc.identifier.citedreferenceMoore, T. E., et al. ( 1997 ), High‐altitude observations of the polar wind, Science, 277, 349 – 351.
dc.identifier.citedreferenceNewell, P. T., and J. W. Gjerloev ( 2012 ), SuperMAG‐based partial ring current indices, J. Geophys. Res., 117, A05215, doi: 10.1029/2012JA017586.
dc.identifier.citedreferenceNilsson, H., et al. ( 2008 ), An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow, Ann. Geophys., 26, 145 – 157.
dc.identifier.citedreferenceNilsson, H., E. Engwall, A. Eriksson, P. A. Puhl‐Quinn, and S. Arvelius ( 2010 ), Centrifugal acceleration in the magnetotail lobes, Ann. Geophys., 28, 569 – 576.
dc.identifier.citedreferenceNilsson, H., I. A. Barghouthi, R. Slapak, A. I. Eriksson, and M. André ( 2012 ), Hot and cold ion outflow: Spatial distribution of ion heating, J. Geophys. Res., 117, A11201, doi: 10.1029/2012JA017974.
dc.identifier.citedreferencePaschmann, G., et al. ( 1997 ), The Electron Drift Instrument for Cluster, Space Sci. Rev., 79, 233 – 269.
dc.identifier.citedreferencePedersen, A., P. Décréau, C. Escoubet, G. Gustafsson, H. Laakso, P. Lindqvist, B. Lybekk, A. Masson, F. Mozer, and A. Vaivads ( 2001 ), Four‐point high time resolution information on electron densities by the Electric Field Experiments (EFW) on Cluster, Ann. Geophys., 19, 1483 – 1489.
dc.identifier.citedreferencePedersen, A., et al. ( 2008 ), Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions, J. Geophys. Res., 113, A07S33, doi: 10.1029/2007JA012636.
dc.identifier.citedreferenceQuinn, J. M., et al. ( 2001 ), Cluster EDI convection measurements across the high‐latitude plasma sheet boundary at midnight, Ann. Geophys., 19, 1669 – 1681.
dc.identifier.citedreferenceRodger, A. S., G. D. Wells, R. J. Moffett, and G. J. Bailey ( 2001 ), The variability of Joule heating, and its effects on the ionosphere and thermosphere, Ann. Geophys., 19, 773 – 781.
dc.identifier.citedreferenceShelley, E. G., W. K. Peterson, A. G. Ghielmetti, and J. Geiss ( 1982 ), The polar ionosphere as a source of energetic magnetospheric plasma, Geophys. Res. Lett., 9, 941 – 944.
dc.identifier.citedreferenceSotirelis, T., P. T. Newell, and C. Meng ( 1998 ), Shape of the open‐closed boundary of the polar cap as determined from observations of precipitating particles by up to four DMSP satellites, J. Geophys. Res., 103, 399 – 406.
dc.identifier.citedreferenceStrangeway, R. J., C. T. Russell, C. W. Carlson, J. P. McFadden, R. E. Ergun, M. Temerin, D. M. Klumpar, W. K. Peterson, and T. E. Moore ( 2012 ), Cusp field‐aligned currents and ion outflows, J. Geophys. Res., 105, 21,129 – 21,142.
dc.identifier.citedreferenceSu, Y.‐J ( 1998 ), The photoelectron‐driven polar wind: Coupled fluid‐semikinetic simulations and measurements by the thermal ion dynamics experiment on the POLAR spacecraft, PhD thesis, Univ. of Alabama, Huntsville, Ala.
dc.identifier.citedreferenceSu, Y.‐J., J. L. Horwitz, T. E. Moore, B. L. Giles, M. O. Chandler, P. D. Craven, M. Hirahara, and C. J. Pollock ( 1998 ), Polar wind survey with the Thermal Ion Dynamics Experiment/Plasma Source Instrument suite aboard POLAR, J. Geophys. Res., 103, 29,305 – 29,338.
dc.identifier.citedreferenceSugiura, M. ( 1964 ), Geomagnetic storms, in Natural Electromagnetic Phenomena, edited by D. F. Bleil, p. 49, Springer, New York.
dc.identifier.citedreferenceSvenes, K. R., B. Lybekk, A. Pedersen, and S. Haaland ( 2008 ), Cluster observations of near‐Earth magnetospheric lobe plasma densities a statistical study, Ann. Geophys., 26, 2845 – 2852.
dc.identifier.citedreferenceWahlund, J.‐E., and H. J. Opgenoorth ( 1989 ), EISCAT observations of strong ion outflows from the F ‐region ionosphere during auroral activity—Preliminary results, Geophys. Res. Lett., 16, 727 – 730.
dc.identifier.citedreferenceWahlund, J.‐E., F. R. E. Forme, H. J. Opgenoorth, M. A. L. Persson, E. V. Mishin, and A. S. Volokitin ( 1992 ), Scattering of electromagnetic waves from a plasma—Enhanced ion acoustic fluctuations due to ion‐ion two‐stream instabilities, Geophys. Res. Lett., 19, 1919 – 1922.
dc.identifier.citedreferenceWanliss, J. A., and K. M. Showalter ( 2006 ), High‐resolution global storm index: Dst versus SYM‐H, J. Geophys. Res., 111, A02202, doi: 10.1029/2005JA011034.
dc.identifier.citedreferenceWhipple, E. C., J. M. Warnock, and R. H. Winkler ( 1974 ), Effect of satellite potential on direct ion density measurements through the plasmapause, J. Geophys. Res., 79, 179 – 186.
dc.identifier.citedreferenceWilson, G. R., D. M. Ober, G. A. Germany, and E. J. Lund ( 2001 ), The relationship between suprathermal heavy ion outflow and auroral electron energy deposition: Polar/Ultraviolet Imager and Fast Auroral Snapshot/Time‐of‐Flight Energy Angle Mass Spectrometer observations, J. Geophys. Res., 106, 18,981 – 18,994.
dc.identifier.citedreferenceWinser, K. J., M. Lockwood, G. O. L. Jones, and P. J. S. Williams ( 1989 ), Observations of large field‐aligned flows of thermal plasma in the auroral ionosphere, Adv. Space Res., 9, 57 – 59.
dc.identifier.citedreferenceYau, A. W., and M. Andre ( 1997 ), Sources of ion outflow in the high latitude ionosphere, Space Sci. Rev., 80, 1 – 25.
dc.identifier.citedreferenceYau, A. W., P. H. Beckwith, W. K. Peterson, and E. G. Shelley ( 1985a ), Long‐term (solar cycle) and seasonal variations of upflowing ionospheric ion events at DE 1 altitudes, J. Geophys. Res., 90, 6395 – 6407.
dc.identifier.citedreferenceYau, A. W., L. Lenchyshyn, E. G. Shelley, and W. K. Peterson ( 1985b ), Energetic auroral and polar ion outflow at DE 1 altitudes Magnitude, composition, magnetic activity dependence, and long‐term variations, J. Geophys. Res., 90, 8417 – 8432.
dc.identifier.citedreferenceYau, A. W., B. A. Whalen, C. Goodenough, E. Sagawa, and T. Mukai ( 1993 ), EXOS D (Akebono) observations of molecular NO(+) and N2(+) upflowing ions in the high‐altitude auroral ionosphere, J. Geophys. Res., 98, 11,205 – 11,224.
dc.identifier.citedreferenceYau, A. W., T. Abe, and W. K. Peterson ( 2007 ), The polar wind: Recent observations, J. Atmos. Sol. Terr. Phys., 69, 1936 – 1983.
dc.identifier.citedreferenceZheng, Y., T. E. Moore, F. S. Mozer, C. T. Russell, and R. J. Strangeway ( 2005 ), Polar study of ionospheric ion outflow versus energy input, J. Geophys. Res., 110, A07210, doi: 10.1029/2004JA010995.
dc.identifier.citedreferenceAbe, T., B. A. Whalen, A. W. Yau, R. E. Horita, S. Watanabe, and E. Sagawa ( 1993 ), EXOS D (Akebono) suprathermal mass spectrometer observations of the polar wind, J. Geophys. Res., 98, 11,191 – 11,203.
dc.identifier.citedreferenceAndré, M., and C. M. Cully ( 2012 ), Low‐energy ions: A previously hidden solar system particle population, Geophys. Res. Lett., 39, L03101, doi: 10.1029/2011GL050242.
dc.identifier.citedreferenceAndré, M., P. Norqvist, L. Andersson, L. Eliasson, A. I. Eriksson, L. Blomberg, R. E. Erlandson, and J. Waldemark ( 1998 ), Ion energization mechanisms at 1700 km in the auroral region, J. Geophys. Res., 103, 4199 – 4222.
dc.identifier.citedreferenceAndré, M., K. Li, and A. I. Eriksson ( 2015 ), Outflow of low‐energy ions and the solar cycle, J. Geophys. Res., 120, 1072 – 1085.
dc.identifier.citedreferenceAxford, W. I. ( 1968 ), The polar wind and the terrestrial helium budget, J. Geophys. Res., 73, 6855 – 6859.
dc.identifier.citedreferenceBanks, P. M., and T. E. Holzer ( 1968 ), The polar wind, J. Geophys. Res., 73, 6846 – 6854.
dc.identifier.citedreferenceBoakes, P. D., S. E. Milan, G. A. Abel, M. P. Freeman, G. Chisham, B. Hubert, and T. Sotirelis ( 2008 ), On the use of IMAGE FUV for estimating the latitude of the open/closed magnetic field line boundary in the ionosphere, Ann. Geophys., 26, 2759 – 2769.
dc.identifier.citedreferenceBouhram, M., B. Klecker, W. Miyake, H. Rème, J. Sauvaud, M. Malingre, L. Kistler, and A. Blagau ( 2004 ), On the altitude dependence of transversely heated O distributions in the cusp/cleft, Ann. Geophys., 22, 1787 – 1798.
dc.identifier.citedreferenceBrinton, H. C., J. M. Grebowsky, and H. G. Mayr ( 1971 ), Altitude variation of ion composition in the midlatitude trough region: Evidence for upward plasma flow, J. Geophys. Res., 76, 3738 – 3745.
dc.identifier.citedreferenceChandler, M. O., T. E. Moore, and J. H. Waite Jr. ( 1991 ), Observations of polar ion outflows, J. Geophys. Res., 96, 1421 – 1428.
dc.identifier.citedreferenceChappell, C. R., T. E. Moore, and J. H. Waite Jr. ( 1987 ), The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere, J. Geophys. Res., 92, 5896 – 5910.
dc.identifier.citedreferenceChappell, C. R., B. L. Giles, T. E. Moore, D. C. Delcourt, P. D. Craven, and M. O. Chandler ( 2000 ), The adequacy of the ionospheric source in supplying magnetospheric plasma, J. Atmos. Sol. Terr. Phys., 62, 421 – 436.
dc.identifier.citedreferenceCladis, J. B. ( 1986 ), Parallel acceleration and transport of ions from polar ionosphere to plasma sheet, Geophys. Res. Lett., 13, 893 – 896.
dc.identifier.citedreferenceCully, C. M., E. F. Donovan, A. W. Yau, and G. G. Arkos ( 2003 ), Akebono/Suprathermal Mass Spectrometer observations of low‐energy ion outflow: Dependence on magnetic activity and solar wind conditions, J. Geophys. Res., 108, 1093, doi: 10.1029/2001JA009200.
dc.identifier.citedreferenceDemars, H. G., A. R. Barakat, and R. W. Schunk ( 1996 ), Effect of centrifugal acceleration on the polar wind, J. Geophys. Res., 101, 24,565 – 24,572.
dc.identifier.citedreferenceEbihara, Y., M. Yamada, S. Watanabe, and M. Ejiri ( 2006 ), Fate of outflowing suprathermal oxygen ions that originate in the polar ionosphere, J. Geophys. Res., 111, A04219, doi: 10.1029/2005JA011403.
dc.identifier.citedreferenceEngwall, E., A. I. Eriksson, M. André, I. Dandouras, G. Paschmann, J. Quinn, and K. Torkar ( 2006 ), Low‐energy (order 10 eV) ion flow in the magnetotail lobes inferred from spacecraft wake observations, Geophys. Res. Lett., 33, L06110, doi: 10.1029/2005GL025179.
dc.identifier.citedreferenceEngwall, E., A. I. Eriksson, C. M. Cully, M. André, P. A. Puhl‐Quinn, H. Vaith, and R. Torbert ( 2009a ), Survey of cold ionospheric outflows in the magnetotail, Ann. Geophys., 27, 3185 – 3201.
dc.identifier.citedreferenceEngwall, E., A. I. Eriksson, C. M. Cully, M. André, R. Torbert, and H. Vaith ( 2009b ), Earth’s ionospheric outflow dominated by hidden cold plasma, Nat. Geosci., 2, 24 – 27.
dc.identifier.citedreferenceEscoubet, C. P., R. Schmidt, and M. L. Goldstein ( 1997 ), Cluster—Science and mission overview, Space Sci. Rev., 79, 11 – 32.
dc.identifier.citedreferenceGjerloev, J. W. ( 2012 ), The SuperMAG data processing technique, J. Geophys. Res., 117, A09213, doi: 10.1029/2012JA017683.
dc.identifier.citedreferenceGustafsson, G., et al. ( 2001 ), First results of electric field and density observations by Cluster EFW based on initial months of operation, Ann. Geophys., 19, 1219 – 1240.
dc.identifier.citedreferenceHaaland, S., G. Paschmann, M. Förster, J. Quinn, R. Torbert, H. Vaith, P. Puhl‐Quinn, and C. Kletzing ( 2008 ), Plasma convection in the magnetotail lobes: Statistical results from Cluster EDI measurements, Ann. Geophys., 26, 2371 – 2382.
dc.identifier.citedreferenceHaaland, S., B. Lybekk, K. Svenes, A. Pedersen, M. Förster, H. Vaith, and R. Torbert ( 2009 ), Plasma transport in the magnetotail lobes, Ann. Geophys., 27, 3577 – 3590.
dc.identifier.citedreferenceHaaland, S., et al. ( 2012a ), Estimating the capture and loss of cold plasma from ionospheric outflow, J. Geophys. Res., 117, A07311, doi: 10.1029/2012JA017679.
dc.identifier.citedreferenceHaaland, S., K. Svenes, B. Lybekk, and A. Pedersen ( 2012b ), A survey of the polar cap density based on Cluster EFW probe measurements: Solar wind and solar irradiation dependence, J. Geophys. Res., 117, A01216, doi: 10.1029/2011JA017250.
dc.identifier.citedreferenceHorwitz, J. L. ( 1982 ), The ionosphere as a source for magnetospheric ions, Rev. Geophys., 20, 929 – 952.
dc.identifier.citedreferenceKistler, L. M., et al. ( 2006 ), Ion composition and pressure changes in storm time and nonstorm substorms in the vicinity of the near‐Earth neutral line, J. Geophys. Res., 111 ( 11 ), A11222, doi: 10.1029/2006JA011939.
dc.identifier.citedreferenceKitamura, N., K. Seki, Y. Nishimura, N. Terada, T. Ono, T. Hori, and R. J. Strangeway ( 2012 ), Photoelectron flows in the polar wind during geomagnetically quiet periods, J. Geophys. Res., 117, A07214, doi: 10.1029/2011JA017459.
dc.identifier.citedreferenceKitamura, N., K. Seki, Y. Nishimura, T. Hori, N. Terada, T. Ono, and R. J. Strangeway ( 2013 ), Reduction of the field‐aligned potential drop in the polar cap during large geomagnetic storms, J. Geophys. Res., 118, 4864 – 4874.
dc.identifier.citedreferenceLi, K., et al. ( 2012 ), On the ionospheric source region of cold ion outflow, Geophys. Res. Lett., 39, L18102, doi: 10.1029/2012GL053297.
dc.identifier.citedreferenceLi, K., et al. ( 2013 ), Transport of cold ions from the polar ionosphere to the plasma sheet, J. Geophys. Res., 118, 5467 – 5477.
dc.identifier.citedreferenceLockwood, M., M. O. Chandler, J. L. Horwitz, J. H. Waite Jr., T. E. Moore, and C. R. Chappell ( 1985a ), The cleft ion fountain, J. Geophys. Res., 90, 9736 – 9748, doi: 10.1029/JA090iA10p09736.
dc.identifier.citedreferenceLockwood, M., J. H. Waite Jr., T. E. Moore, C. R. Chappell, and J. F. E. Johnson ( 1985b ), A new source of suprathermal O + ions near the dayside polar cap boundary, J. Geophys. Res., 90, 4099 – 4116.
dc.identifier.citedreferenceLybekk, B., A. Pedersen, S. Haaland, K. Svenes, A. N. Fazakerley, A. Masson, M. G. G. T. Taylor, and J.‐G. Trotignon ( 2012 ), Solar cycle variations of the Cluster spacecraft potential and its use for electron density estimations, J. Geophys. Res., 117, A01217, doi: 10.1029/2011JA016969.
dc.identifier.citedreferenceMilan, S. E. ( 2009 ), Both solar wind‐magnetosphere coupling and ring current intensity control of the size of the auroral oval, Geophys. Res. Lett., 36, L1810, doi: 10.1029/2009GL039997.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.