Show simple item record

Technical Note: Characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MRâ SIM

dc.contributor.authorPrice, Ryan G.
dc.contributor.authorKadbi, Mo
dc.contributor.authorKim, Joshua
dc.contributor.authorBalter, James
dc.contributor.authorChetty, Indrin J.
dc.contributor.authorGlide‐hurst, Carri K.
dc.date.accessioned2017-01-06T20:49:29Z
dc.date.available2017-01-06T20:49:29Z
dc.date.issued2015-10
dc.identifier.citationPrice, Ryan G.; Kadbi, Mo; Kim, Joshua; Balter, James; Chetty, Indrin J.; Glide‐hurst, Carri K. (2015). "Technical Note: Characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MRâ SIM." Medical Physics 42(10): 5955-5960.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135020
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherbiomedical equipment
dc.subject.othermedical image processing
dc.subject.otherimage reconstruction
dc.subject.otherdistortion
dc.subject.otherbiomedical MRI
dc.subject.otherAnatomy
dc.subject.otherComputed tomography
dc.subject.otherSemiconductor device fabrication
dc.subject.otherMedical image distortion
dc.subject.otherMedical treatment planning
dc.subject.otherTime measurement
dc.subject.otherMedical magnetic resonance imaging
dc.subject.otherMagnets
dc.subject.othergradient nonâ linearity
dc.subject.othercorrection
dc.subject.otherdistortion
dc.subject.othertreatment planning
dc.subject.otherMRI
dc.subject.otherImage data processing or generation, in general
dc.subject.otherDigital computing or data processing equipment or methods, specially adapted for specific applications
dc.subject.otherBiological material, e.g. blood, urine; Haemocytometers
dc.subject.otherInvolving electronic [emr] or nuclear [nmr] magnetic resonance, e.g. magnetic resonance imaging
dc.subject.otherReconstruction
dc.subject.otherArtifacts and distortion
dc.subject.otherMagnetic resonance imaging
dc.subject.otherplanning
dc.subject.otherphantoms
dc.subject.otherpatient treatment
dc.titleTechnical Note: Characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MRâ SIM
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109
dc.contributor.affiliationotherDepartment of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202
dc.contributor.affiliationotherDepartment of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
dc.contributor.affiliationotherDepartment of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 and Department of Radiation Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201
dc.contributor.affiliationotherPhilips Healthcare, Cleveland, Ohio 44143
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135020/1/mp0245.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135020/2/mp0245_am.pdf
dc.identifier.doi10.1118/1.4930245
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceD. F. Dubois, W. S. Bice, Jr., and B. R. Prestige, â CT and MRI derived source localization error in a custom prostate phantom using automated image coregistration,â Med. Phys. 28, 2280 â 2284 ( 2001 ). 10.1118/1.1406525
dc.identifier.citedreferenceT. Nyholm, M. Nyberg, M. G. Karlsson, and M. Karlsson, â Systematisation of spatial uncertainties for comparison between a MR and a CTâ based radiotherapy workflow for prostate treatments,â Radiat. Oncol. 4, 54 ( 2009 ). 10.1186/1748â 717Xâ 4â 54
dc.identifier.citedreferenceP. L. Roberson, P. W. McLaughlin, V. Narayana, S. Troyer, G. V. Hixson, and M. L. Kessler, â Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate,â Med. Phys. 32, 473 â 482 ( 2005 ). 10.1118/1.1851920
dc.identifier.citedreferenceR. C. Krempien, K. Schubert, D. Zierhut, M. C. Steckner, M. Treiber, W. Harms, U. Mende, D. Latz, M. Wannenmacher, and F. Wenz, â Open lowâ field magnetic resonance imaging in radiation therapy treatment planning,â Int. J. Radiat. Oncol., Biol., Phys. 53, 1350 â 1360 ( 2002 ). 10.1016/S0360â 3016(02)02886â 9
dc.identifier.citedreferenceM. Debois, R. Oyen, F. Maes, G. Verswijvel, G. Gatti, H. Bosmans, M. Feron, E. Bellon, G. Kutcher, H. Van Poppel, and L. Vanuytsel, â The contribution of magnetic resonance imaging to the threeâ dimensional treatment planning of localized prostate cancer,â Int. J. Radiat. Oncol., Biol., Phys. 45, 857 â 865 ( 1999 ). 10.1016/S0360â 3016(99)00288â 6
dc.identifier.citedreferenceP. Jezzard and R. S. Balaban, â Correction for geometric distortion in echo planar images from B0 field variations,â Magn. Reson. Med. 34, 65 â 73 ( 1995 ). 10.1002/mrm.1910340111
dc.identifier.citedreferenceK. Wachowicz, T. Stanescu, S. D. Thomas, and B. G. Fallone, â Implications of tissue magnetic susceptibilityâ related distortion on the rotating magnet in an MRâ linac design,â Med. Phys. 37, 1714 â 1721 ( 2010 ). 10.1118/1.3355856
dc.identifier.citedreferenceA. Fransson, P. Andreo, and R. Potter, â Aspects of MR image distortions in radiotherapy treatment planning,â Strahlenther. Onkol. 177, 59 â 73 ( 2001 ). 10.1007/PL00002385
dc.identifier.citedreferenceA. H. Buck and T. L. Stedman, A Reference Handbook of the Medical Sciences Embracing the Entire Range of Scientific and Practical Medicine and Allied Science, new edition ( W. Wood and Company, New York, NY, 1900 ).
dc.identifier.citedreferenceW. Platzer, Color Atlas of Human Anatomy. Volume 1 Locomotor System, 6th revised and enlarged edition ( Thieme, Stuttgart, New York, 2009 ).
dc.identifier.citedreferenceA. Walker, G. Liney, P. Metcalfe, and L. Holloway, â MRI distortion: Considerations for MRI based radiotherapy treatment planning,â Australas. Phys. Eng. Sci. Med. 37, 103 â 113 ( 2014 ). 10.1007/s13246â 014â 0252â 2
dc.identifier.citedreferenceH. Gray and W. H. Lewis, Anatomy of the Human Body, 20th ed. ( Lea & Febiger, Philadelphia, New York, 1918 ).
dc.identifier.citedreferenceC. D. Fryar, Q. Gu, and C. L. Ogden (2012): Anthropometric reference data for children and adults: United States, 2007â 2010. Vital Health Stat11 (252), available at: http://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf. Accessed September, 2015.
dc.identifier.citedreferenceE. S. Paulson, B. Erickson, C. Schultz, and X. Allen Li, â Comprehensive MRI simulation methodology using a dedicated MRI scanner in radiation oncology for external beam radiation treatment planning,â Med. Phys. 42, 28 â 39 ( 2015 ). 10.1118/1.4896096
dc.identifier.citedreferenceD. Mah, M. Steckner, E. Palacio, R. Mitra, T. Richardson, and G. E. Hanks, â Characteristics and quality assurance of a dedicated open 0.23 T MRI for radiation therapy simulation,â Med. Phys. 29, 2541 â 2547 ( 2002 ). 10.1118/1.1513991
dc.identifier.citedreferenceD. Wang and Z. Yang, â A detailed study on the use of polynomial functions for modeling geometric distortion in magnetic resonance imaging,â Med. Phys. 35, 908 â 916 ( 2008 ). 10.1118/1.2839100
dc.identifier.citedreferenceC. Hong, D. H. Lee, and B. S. Han, â Characteristics of geometric distortion correction with increasing fieldâ ofâ view in openâ configuration MRI,â Magn. Reson. Imaging 32, 786 â 790 ( 2014 ). 10.1016/j.mri.2014.02.007
dc.identifier.citedreferenceS. F. Tanner, D. J. Finnigan, V. S. Khoo, P. Mayles, D. P. Dearnaley, and M. O. Leach, â Radiotherapy planning of the pelvis using distortion corrected MR images: The removal of system distortions,â Phys. Med. Biol. 45, 2117 â 2132 ( 2000 ). 10.1088/0031â 9155/45/8/305
dc.identifier.citedreferenceH. Chang and J. M. Fitzpatrick, â A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities,â IEEE Trans. Med. Imaging 11, 319 â 329 ( 1992 ). 10.1109/42.158935
dc.identifier.citedreferenceC. J. Bakker, M. A. Moerland, R. Bhagwandien, and R. Beersma, â Analysis of machineâ dependent and objectâ induced geometric distortion in 2DFT MR imaging,â Magn. Reson. Imaging 10, 597 â 608 ( 1992 ). 10.1016/0730â 725X(92)90011â N
dc.identifier.citedreferenceD. Wang, W. Strugnell, G. Cowin, D. M. Doddrell, and R. Slaughter, â Geometric distortion in clinical MRI systems Part I: Evaluation using a 3D phantom,â Magn. Reson. Imaging 22, 1211 â 1221 ( 2004 ). 10.1016/j.mri.2004.08.012
dc.identifier.citedreferenceL. N. Baldwin, K. Wachowicz, S. D. Thomas, R. Rivest, and B. G. Fallone, â Characterization, prediction, and correction of geometric distortion in 3 T MR images,â Med. Phys. 34, 388 â 399 ( 2007 ). 10.1118/1.2402331
dc.identifier.citedreferenceC. K. Glideâ Hurst, N. Wen, D. Hearshen, J. Kim, M. Pantelic, B. Zhao, T. Mancell, K. Levin, B. Movsas, I. J. Chetty, and M. S. Siddiqui, â Initial clinical experience with a radiation oncology dedicated open 1.0 T MRâ simulation,â J. Appl. Clin. Med. Phys. 16, 218 â 240 ( 2015 ). 10.1120/jacmp.v16i2.5201
dc.identifier.citedreferenceL. N. Baldwin, K. Wachowicz, and B. G. Fallone, â A twoâ step scheme for distortion rectification of magnetic resonance images,â Med. Phys. 36, 3917 â 3926 ( 2009 ). 10.1118/1.3180107
dc.identifier.citedreferenceT. Stanescu, K. Wachowicz, and D. A. Jaffray, â Characterization of tissue magnetic susceptibilityâ induced distortions for MRIgRT,â Med. Phys. 39, 7185 â 7193 ( 2012 ). 10.1118/1.4764481
dc.identifier.citedreferenceB. H. Kristensen, F. J. Laursen, V. Logager, P. F. Geertsen, and A. Krarupâ Hansen, â Dosimetric and geometric evaluation of an open lowâ field magnetic resonance simulator for radiotherapy treatment planning of brain tumours,â Radiother. Oncol. 87, 100 â 109 ( 2008 ). 10.1016/j.radonc.2008.01.014
dc.identifier.citedreferenceT. Stanescu, H. S. Jans, N. Pervez, P. Stavrev, and B. G. Fallone, â A study on the magnetic resonance imaging (MRI)â based radiation treatment planning of intracranial lesions,â Phys. Med. Biol. 53, 3579 â 3593 ( 2008 ). 10.1088/0031â 9155/53/13/013
dc.identifier.citedreferenceA. Johansson, M. Karlsson, and T. Nyholm, â CT substitute derived from MRI sequences with ultrashort echo time,â Med. Phys. 38, 2708 â 2714 ( 2011 ). 10.1118/1.3578928
dc.identifier.citedreferenceS. H. Hsu, Y. Cao, K. Huang, M. Feng, and J. M. Balter, â Investigation of a method for generating synthetic CT models from MRI scans of the head and neck for radiation therapy,â Phys. Med. Biol. 58, 8419 â 8435 ( 2013 ). 10.1088/0031â 9155/58/23/8419
dc.identifier.citedreferenceJ. Kim, C. Glideâ Hurst, A. Doemer, N. Wen, B. Movsas, and I. J. Chetty, â Implementation of a novel algorithm for generating synthetic CT images from magnetic resonance imaging data sets for prostate cancer radiation therapy,â Int. J. Radiat. Oncol., Biol., Phys. 91, 39 â 47 ( 2015 ). 10.1016/j.ijrobp.2014.09.015
dc.identifier.citedreferenceD. Wang, D. M. Doddrell, and G. Cowin, â A novel phantom and method for comprehensive 3â dimensional measurement and correction of geometric distortion in magnetic resonance imaging,â Magn. Reson. Imaging 22, 529 â 542 ( 2004 ). 10.1016/j.mri.2004.01.008
dc.identifier.citedreferenceS. J. Doran, L. Charlesâ Edwards, S. A. Reinsberg, and M. O. Leach, â A complete distortion correction for MR images: I. Gradient warp correction,â Phys. Med. Biol. 50, 1343 â 1361 ( 2005 ). 10.1088/0031â 9155/50/7/001
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.