Show simple item record

Saturn’s quasiperiodic magnetohydrodynamic waves

dc.contributor.authorYates, J. N.
dc.contributor.authorSouthwood, D. J.
dc.contributor.authorDougherty, M. K.
dc.contributor.authorSulaiman, A. H.
dc.contributor.authorMasters, A.
dc.contributor.authorCowley, S. W. H.
dc.contributor.authorKivelson, M. G.
dc.contributor.authorChen, C. H. K.
dc.contributor.authorProvan, G.
dc.contributor.authorMitchell, D. G.
dc.contributor.authorHospodarsky, G. B.
dc.contributor.authorAchilleos, N.
dc.contributor.authorSorba, A. M.
dc.contributor.authorCoates, A. J.
dc.date.accessioned2017-01-06T20:49:44Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11-16
dc.identifier.citationYates, J. N.; Southwood, D. J.; Dougherty, M. K.; Sulaiman, A. H.; Masters, A.; Cowley, S. W. H.; Kivelson, M. G.; Chen, C. H. K.; Provan, G.; Mitchell, D. G.; Hospodarsky, G. B.; Achilleos, N.; Sorba, A. M.; Coates, A. J. (2016). "Saturn’s quasiperiodic magnetohydrodynamic waves." Geophysical Research Letters 43(21): 11,102-11,111.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/135035
dc.description.abstractQuasiperiodic ∼1 h fluctuations have been recently reported by numerous instruments on board the Cassini spacecraft. The interpretation of the sources of these fluctuations has remained elusive to date. Here we provide an explanation for the origin of these fluctuations using magnetometer observations. We find that magnetic field fluctuations at high northern latitudes are Alfvénic, with small amplitudes (∼0.4nT), and are concentrated in wave packets similar to those observed in Kleindienst et al. (2009). The wave packets recur periodically at the northern magnetic oscillation period. We use a magnetospheric box model to provide an interpretation of the wave periods. Our model results suggest that the observed magnetic fluctuations are second harmonic Alfvén waves standing between the northern and southern ionospheres in Saturn’s outer magnetosphere.Key PointsCassini observed quasiperiodic ∼60 min (QP60) fluctuations of Saturn’s magnetic fieldThese fluctuations are consistent with similar QP60 pulsations reported at SaturnWe propose that these fluctuations are standing second harmonic Alfvén waves
dc.publisherWiley
dc.subject.otherQP60
dc.subject.otherMHD waves
dc.subject.otherSaturn’s magnetosphere
dc.subject.otherperiodicity
dc.titleSaturn’s quasiperiodic magnetohydrodynamic waves
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135035/1/grl55131_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135035/2/grl55131-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135035/3/grl55131.pdf
dc.identifier.doi10.1002/2016GL071069
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceKurth, W. S., A. Lecacheux, T. F. Averkamp, J. B. Groene, and D. A. Gurnett ( 2007 ), A Saturnian longitude system based on a variable kilometric radiation period, Geophys. Res. Lett., 34, L02201, doi: 10.1029/2006GL028336.
dc.identifier.citedreferenceDungey, J. W. ( 1955 ), Electrodynamics of the outer atmosphere, in Physics of the Ionosphere, p. 229, The Physical Society, London.
dc.identifier.citedreferenceGalopeau, P. H. M., and A. Lecacheux ( 2000 ), Variations of Saturn’s radio rotation period measured at kilometer wavelengths, J. Geophys. Res., 105, 13,089 – 13,102, doi: 10.1029/1999JA005089.
dc.identifier.citedreferenceGlassmeier, K.‐H., F. M. Neubauer, N. F. Ness, and M. H. Acuna ( 1989 ), Standing hydromagnetic waves in the Io plasma torus—Voyager 1 observations, J. Geophys. Res., 94, 15,063 – 15,076, doi: 10.1029/JA094iA11p15063.
dc.identifier.citedreferenceGlassmeier, K.‐H., D. Klimushkin, C. Othmer, and P. Mager ( 2004 ), ULF waves at Mercury: Earth, the giants, and their little brother compared, Adv. Space Res., 33, 1875 – 1883, doi: 10.1016/j.asr.2003.04.047.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2004 ), The Cassini radio and plasma wave investigation, Space Sci. Rev., 114, 395 – 463, doi: 10.1007/s11214-004-1434-0.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2009 ), Discovery of a north‐south asymmetry in Saturn’s radio rotation period, Geophys. Res. Lett., 36, L16102, doi: 10.1029/2009GL039621.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2010 ), A plasmapause‐like density boundary at high latitudes in Saturn’s magnetosphere, Geophys. Res. Lett., 37, L16806, doi: 10.1029/2010GL044466.
dc.identifier.citedreferenceHunt, G. J., et al. ( 2014 ), Field‐aligned currents in Saturn’s southern nightside magnetosphere: Subcorotation and planetary period oscillation components, J. Geophys. Res. Space Physics, 119, 9847 – 9899, doi: 10.1002/2014JA020506.
dc.identifier.citedreferenceKanani, S. J., et al. ( 2010 ), A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi‐instrument Cassini measurements, J. Geophys. Res., 115, A06207, doi: 10.1029/2009JA014262.
dc.identifier.citedreferenceKeiling, A. ( 2009 ), Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: A review, Space Sci. Rev., 142, 73 – 156, doi: 10.1007/s11214-008-9463-8.
dc.identifier.citedreferenceKhurana, K. K., and M. G. Kivelson ( 1989 ), Ultralow frequency MHD waves in Jupiter’s middle magnetosphere, J. Geophys. Res., 94, 5241 – 5254, doi: 10.1029/JA094iA05p05241.
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 1985 ), Resonant ULF waves—A new interpretation, Geophys. Res. Lett., 12, 49 – 52, doi: 10.1029/GL012i001p00049.
dc.identifier.citedreferenceKleindienst, G., K.‐H. Glassmeier, S. Simon, M. K. Dougherty, and N. Krupp ( 2009 ), Quasiperiodic ULF—Pulsations in Saturn’s magnetosphere, Ann. Geophys., 27, 885 – 894, doi: 10.5194/angeo-27-885-2009.
dc.identifier.citedreferenceKrimigis, S. M., et al. ( 2004 ), Magnetosphere Imaging Instrument (MIMI) on the Cassini mission to Saturn/Titan, Space Sci. Rev., 114, 233 – 329, doi: 10.1007/s11214-004-1410-8.
dc.identifier.citedreferenceMeredith, C. J., S. W. H. Cowley, K. C. Hansen, J. D. Nichols, and T. K. Yeoman ( 2013 ), Simultaneous conjugate observations of small‐scale structures in Saturn’s dayside ultraviolet auroras: Implications for physical origins, J. Geophys. Res. Space Physics, 118, 2244 – 2266, doi: 10.1002/jgra.50270.
dc.identifier.citedreferenceMitchell, D. G., et al. ( 2009 ), Ion conics and electron beams associated with auroral processes on Saturn, J. Geophys. Res., 114, A02212, doi: 10.1029/2008JA013621.
dc.identifier.citedreferenceMitchell, D. G., et al. ( 2016 ), Recurrent pulsations in Saturn’s high latitude magnetosphere, Icarus, 263, 94 – 100, doi: 10.1016/j.icarus.2014.10.028.
dc.identifier.citedreferencePalmaerts, B., et al. ( 2016 ), Statistical analysis and multi‐instrument overview of the quasi‐periodic 1‐hour pulsations in Saturn’s outer magnetosphere, Icarus, 271, 1 – 18, doi: 10.1016/j.icarus.2016.01.025.
dc.identifier.citedreferenceProvan, G., et al. ( 2012 ), Dual periodicities in planetary‐period magnetic field oscillations in Saturn’s tail, J. Geophys. Res., 117, A01209, doi: 10.1029/2011JA017104.
dc.identifier.citedreferenceRadioti, A., et al. ( 2011 ), Bifurcations of the main auroral ring at Saturn: Ionospheric signatures of consecutive reconnection events at the magnetopause, J. Geophys. Res., 116, A11209, doi: 10.1029/2011JA016661.
dc.identifier.citedreferenceRadioti, A., et al. ( 2013 ), Auroral signatures of multiple magnetopause reconnection at Saturn, Geophys. Res. Lett., 40, 4498 – 4502, doi: 10.1002/grl.50889.
dc.identifier.citedreferenceRoussos, E., et al. ( 2016 ), Quasi‐periodic injections of relativistic electrons in Saturn’s outer magnetosphere, Icarus, 263, 101 – 116, doi: 10.1016/j.icarus.2015.04.017.
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ), Some features of field line resonances in the magnetosphere, Planet and Space Sci., 22, 483 – 491, doi: 10.1016/0032-0633(74)90078-6.
dc.identifier.citedreferenceSouthwood, D. J., and W. J. Hughes ( 1983 ), Theory of hydromagnetic waves in the magnetosphere, Space Sci. Rev., 35, 301 – 366, doi: 10.1007/BF00169231.
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 1986 ), The effect of parallel inhomogeneity on magnetospheric hydromagnetic wave coupling, J. Geophys. Res., 91, 6871 – 6876, doi: 10.1029/JA091iA06p06871.
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 2007 ), Saturnian magnetospheric dynamics: Elucidation of a camshaft model, J. Geophys. Res., 112, A12222, doi: 10.1029/2007JA012254.
dc.identifier.citedreferenceTakahashi, K., P. J. Chi, R. E. Denton, and R. L. Lysak  (Eds.) ( 2006 ), Magnetospheric ULF Waves: Synthesis and New Directions, Geophys. Monogr. Ser., vol. 169, doi: 10.1029/GM169.
dc.identifier.citedreferenceWarner, M. R., and D. Orr ( 1979 ), Time of flight calculations for high latitude geomagnetic pulsations, Planet. Space Sci., 27, 679 – 689, doi: 10.1016/0032-0633(79)90165-X.
dc.identifier.citedreferenceYates, J. N., D. J. Southwood, and M. K. Dougherty ( 2015 ), Magnetic phase structure of Saturn’s 10.7 h oscillations, J. Geophys. Res. Lett., 120, 2631 – 2648, doi: 10.1002/2014JA020629.
dc.identifier.citedreferenceYoung, D. T., et al. ( 2004 ), Cassini plasma spectrometer investigation, Space Sci. Rev., 114, 1 – 112, doi: 10.1007/s11214-004-1406-4.
dc.identifier.citedreferenceAchilleos, N., P. Guio, and C. S. Arridge ( 2010 ), A model of force balance in Saturn’s magnetodisc, Mon. Not. R. Astron. Soc., 401, 2349 – 2371, doi: 10.1111/j.1365-2966.2009.15865.x.
dc.identifier.citedreferenceAndrews, D. J., et al. ( 2010 ), Magnetospheric period oscillations at Saturn: Comparison of equatorial and high‐latitude magnetic field periods with north and south Saturn kilometric radiation periods, J. Geophys. Res., 115, A12252, doi: 10.1029/2010JA015666.
dc.identifier.citedreferenceAndrews, D. J., et al. ( 2012 ), Planetary period oscillations in Saturn’s magnetosphere: Evolution of magnetic oscillation properties from southern summer to post‐equinox, J. Geophys. Res., 117, A04224, doi: 10.1029/2011JA017444.
dc.identifier.citedreferenceArridge, C. S., et al. ( 2008 ), Warping of Saturn’s magnetospheric and magnetotail current sheets, J. Geophys. Res., 113, A08217, doi: 10.1029/2007JA012963.
dc.identifier.citedreferenceArridge, C. S., et al. ( 2011 ), Periodic motion of Saturn’s nightside plasma sheet, J. Geophys. Res., 116, A11205, doi: 10.1029/2011JA016827.
dc.identifier.citedreferenceBadman, S. V., et al. ( 2012 ), Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs, J. Geophys. Res., 117, A01211, doi: 10.1029/2011JA017222.
dc.identifier.citedreferenceBadman, S. V., et al. ( 2016 ), Saturn’s auroral morphology and field‐aligned currents during a solar wind compression, Icarus, 263, 83 – 93, doi: 10.1016/j.icarus.2014.11.014.
dc.identifier.citedreferenceBagenal, F., et al. ( 2014 ), Magnetospheric science objectives of the Juno mission, Space. Sci. Rev., 1 – 69, doi: 10.1007/s11214-014-0036-8.
dc.identifier.citedreferenceBrown, R. H., et al. ( 2004 ), The Cassini visual and infrared mapping spectrometer (VIMS) investigation, Space Sci. Rev., 115, 111 – 168, doi: 10.1007/s11214-004-1453-x.
dc.identifier.citedreferenceBunce, E. J., S. W. H. Cowley, and S. E. Milan ( 2005 ), Interplanetary magnetic field control of Saturn’s polar cusp aurora, Ann. Geophys., 23, 1405 – 1431, doi: 10.5194/angeo-23-1405-2005.
dc.identifier.citedreferenceBunce, E. J., et al. ( 2014 ), Cassini nightside observations of the oscillatory motion of Saturn’s northern auroral oval, J. Geophys. Res. lett., 119, 3528 – 3543, doi: 10.1002/2013JA019527.
dc.identifier.citedreferenceCarbary, J. F., W. S. Kurth, and D. G. Mitchell ( 2016 ), Short periodicities in low‐frequency plasma waves at Saturn, J. Geophys. Res. Space Physics, 121, 6562 – 6572, doi: 10.1002/2016JA022732.
dc.identifier.citedreferenceCarlson, C. W., et al. ( 1998 ), FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating, Geophys. Res. Lett., 25, 2017 – 2020, doi: 10.1029/98GL00851.
dc.identifier.citedreferenceChen, L., and A. Hasegawa ( 1974 ), A theory of long‐period magnetic pulsations: 1. Steady state excitation of field line resonance, J. Geophys. Res., 79, 1024 – 1032, doi: 10.1029/JA079i007p01024.
dc.identifier.citedreferenceCramm, R., K.‐H. Glassmeier, M. Stellmacher, and C. Othmer ( 1998 ), Evidence for resonant mode coupling in Saturn’s magnetosphere, J. Geophys. Res., 103, 11,951 – 11,960, doi: 10.1029/98JA00629.
dc.identifier.citedreferenceDelamere, P. A. ( 2016 ), A review of the low‐frequency waves in the giant magnetospheres, in Low‐Frequency Waves in Space Plasmas, vol. 216, pp. 365 – 378, Wiley, Hoboken, N. J., doi: 10.1002/9781119055006.ch21.
dc.identifier.citedreferenceDougherty, M. K., et al. ( 2004 ), The Cassini magnetic field investigation, Space Sci. Rev., 114, 331 – 383, doi: 10.1007/s11214-004-1432-2.
dc.identifier.citedreferenceDougherty, M. K., et al. ( 2005 ), Cassini magnetometer observations during Saturn orbit insertion, Science, 307, 1266 – 1270, doi: 10.1126/science.1106098.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.