Show simple item record

Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xyloâ oligosaccharides utilization to Escherichia coli

dc.contributor.authorTauzin, Alexandra S.
dc.contributor.authorLaville, Elisabeth
dc.contributor.authorXiao, Yao
dc.contributor.authorNouaille, Sébastien
dc.contributor.authorLe Bourgeois, Pascal
dc.contributor.authorHeux, Stéphanie
dc.contributor.authorPortais, Jean‐charles
dc.contributor.authorMonsan, Pierre
dc.contributor.authorMartens, Eric C.
dc.contributor.authorPotocki‐veronese, Gabrielle
dc.contributor.authorBordes, Florence
dc.date.accessioned2017-01-06T20:49:54Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11
dc.identifier.citationTauzin, Alexandra S.; Laville, Elisabeth; Xiao, Yao; Nouaille, Sébastien ; Le Bourgeois, Pascal; Heux, Stéphanie ; Portais, Jean‐charles ; Monsan, Pierre; Martens, Eric C.; Potocki‐veronese, Gabrielle ; Bordes, Florence (2016). "Functional characterization of a gene locus from an uncultured gut Bacteroides conferring xyloâ oligosaccharides utilization to Escherichia coli." Molecular Microbiology 102(4): 579-592.
dc.identifier.issn0950-382X
dc.identifier.issn1365-2958
dc.identifier.urihttps://hdl.handle.net/2027.42/135045
dc.publisherWiley Periodicals, Inc.
dc.publisherVirginia Polytechnic Institute and State University
dc.titleFunctional characterization of a gene locus from an uncultured gut Bacteroides conferring xyloâ oligosaccharides utilization to Escherichia coli
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135045/1/mmi13480_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135045/2/mmi13480.pdf
dc.identifier.doi10.1111/mmi.13480
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceShipman, J.A., Cho, K.H., Siegel, H.A., and Salyers, A.A. ( 1999 ) Physiological characterization of SusG, an outer membrane protein essential for starch utilization by Bacteroides thetaiotaomicron. J Bacteriol 181: 7206 â 7211.
dc.identifier.citedreferencePhansopa, C., Roy, S., Rafferty, J.B., Douglas, C.W.I., Pandhal, J., Wright, P.C., et al. ( 2014 ) Structural and functional characterization of NanU, a novel highâ affinity sialic acidâ inducible binding protein of oral and gutâ dwelling Bacteroidetes species. Biochem J 458: 499 â 511.
dc.identifier.citedreferenceQian, Y., Yomano, L.P., Preston, J.F., Aldrich, H.C., and Ingram, L.O. ( 2003 ) Cloning, characterization, and functional expression of the Klebsiella oxytoca xylodextrin utilization operon (xynTB) in Escherichia coli. Appl Environ Microbiol 69: 5957 â 5967.
dc.identifier.citedreferenceRogowski, A., Briggs, J.A., Mortimer, J.C., Tryfona, T., Terrapon, N., Lowe, E.C., et al. ( 2015 ) Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun 6: 7481.
dc.identifier.citedreferenceRoy, S., Douglas, C.W.I., and Stafford, G.P. ( 2010 ) A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol 192: 2285 â 2293.
dc.identifier.citedreferenceSchauer, K., Rodionov, D.A., and Reuse, H. D. ( 2008 ) New substrates for TonBâ dependent transport: do we only see the â tip of the iceberg? â . Trends Biochem Sci 33: 330 â 338.
dc.identifier.citedreferenceSeydel, A., Gounon, P., and Pugsley, A.P. ( 1999 ) Testing the ’+ 2 rule’ for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 34: 810 â 821.
dc.identifier.citedreferenceShin, H., Mcclendon, S., Vo, T., and Chen, R.R. ( 2010 ) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl Environ Microbiol 76: 8150 â 8159.
dc.identifier.citedreferenceMartens, E.C., Chiang, H.C., and Gordon, J.I. ( 2008 ) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4: 447 â 457.
dc.identifier.citedreferenceShultzaberger, R.K., Chen, Z., Lewis, K.A., and Schneider, T.D. ( 2007 ) Anatomy of Escherichia coli s 70 promoters. Nucleic Acids Res 35: 771 â 788.
dc.identifier.citedreferenceSingh, S.S., Typas, A., Hengge, R., and Grainger, D.C. ( 2011 ) Escherichia coli p 70 senses sequence and conformation of the promoter spacer region. Nucleic Acids Res 39: 5109 â 5118.
dc.identifier.citedreferenceSolovyev, V., and Salamov, A. ( 2011 ) Automatic annotation of microbial genomes and metagenomic sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies. Li, R.W. (ed.). New York: Nova Science Publishers.
dc.identifier.citedreferenceSpurgeon, S.L., Jones, R.C., and Ramakrishnan, R. ( 2008 ) High throughput gene expression measurement with real time pcr in a microfluidic dynamic array. PLoS One 3: e1662.
dc.identifier.citedreferenceStafford, G., Roy, S., Honma, K., and Sharma, A. ( 2012 ) Sialic acid, periodontal pathogens and Tannerella forsythia: stick around and enjoy the feast!. Mol Oral Microbiol 27: 11 â 22.
dc.identifier.citedreferenceStrachan, C.R., Singh, R., VanInsberghe, D., Ievdokymenko, K., Budwill, K., Mohn, W.W., et al. ( 2014 ) Metagenomic scaffolds enable combinatorial lignin transformation. Proc Natl Acad Sci USA 111: 10143 â 10148.
dc.identifier.citedreferenceTasse, L., Bercovici, J., Pizzutâ Serin, S., Robe, P., Tap, J., Klopp, C., et al. ( 2010 ) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20: 1605 â 1612.
dc.identifier.citedreferenceTauzin, A.S., Kwiatkowski, K.J., Orlovsky, N.I., Smith, C.J., Creagh, A.L., Haynes, C.A., et al. ( 2016 ) Molecular dissection of xyloglucan recognition in a prominent human gut symbiont. MBio 7: e02134 â e02115.
dc.identifier.citedreferenceTerrapon, N., Lombard, V., Gilbert, H.J., and Henrissat, B. ( 2015 ) Automatic prediction of polysaccharide utilization loci in Bacteroidetes species. Bioinformatics 31: 647 â 655.
dc.identifier.citedreferenceTokuda, H., and Matsuyama, S.I. ( 2004 ) Sorting of lipoproteins to the outer membrane in E. coli. Biochim Biophys Acta 1693: 5 â 13.
dc.identifier.citedreferenceTurnbaugh, P.J., Ley, R.E., Hamady, M., Fraserâ Liggett, C.M., Knight, R., and Gordon, J.I. ( 2007 ) The human microbiome project. Nature 449: 804 â 810.
dc.identifier.citedreferenceVimrt, E.R., and Troy, F.A. ( 1985 ) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164: 845 â 853.
dc.identifier.citedreferenceWang, Y., Chen, Y., Zhou, Q., Huang, S., Ning, K., Xu, J., et al. ( 2012 ) A cultureâ independent approach to unravel uncultured bacteria and functional genes in a complex microbial community. PLoS One 7: e47530.
dc.identifier.citedreferenceWeglenska, A., Jacob, B., and Sirko, A. ( 1996 ) Trancriptional pattern of Escherichia coli ihfB (himD) gene expression. Gene 181: 85 â 88.
dc.identifier.citedreferenceYamaguchi, K., Yu, F., and Inouye, M. ( 1988 ) A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 53: 423 â 432.
dc.identifier.citedreferenceYan, N. ( 2015 ) Structural biology of the major facilitator superfamily transporters. Annu Rev Biophys 44: 257 â 283.
dc.identifier.citedreferenceAndré, I., Potockiâ Véronèse, G., Barbe, S., Moulis, C., and Remaudâ Siméon, M. ( 2014 ) CAZyme discovery and design for sweet dreams. Curr Opin Chem Biol 19: 17 â 24.
dc.identifier.citedreferenceBolam, D.N., and Koropatkin, N.M. ( 2012 ) Glycan recognition by the Bacteroidetes Susâ like systems. Curr Opin Struct Biol 22: 563 â 569.
dc.identifier.citedreferenceCameron, E.A., Maynard, M.A., Smith, C.J., Smith, T.J., Koropatkin, N.M., and Martens, E.C. ( 2012 ) Multidomain carbohydrateâ binding proteins involved in Bacteroides thetaiotaomicron starch metabolism. J Biol Chem 287: 34614 â 34625.
dc.identifier.citedreferenceCameron, E.A., Kwiatkowski, K.J., Lee, B.H., Hamaker, B.R., Koropatkin, N.M., and Martens, E.C. ( 2014 ) Multifunctional nutrientâ binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. MBio 5: e01441 â e01414.
dc.identifier.citedreferenceCecchini, D.A., Laville, E., Laguerre, S., Robe, P., Leclerc, M., Doré, J., et al. ( 2013 ) Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS One 8: e72766.
dc.identifier.citedreferenceChung, E.J., Lim, H.K., Kim, J., Choi, G.J., Park, E.J., Lee, M.H, et al. ( 2008 ) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74: 723 â 730.
dc.identifier.citedreferenceCuskin, F., Lowe, E.C., Temple, M.J., Zhu, Y., Cameron, E.A., Pudlo, N.A, et al. ( 2015 ) Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. Nature 517: 165 â 169.
dc.identifier.citedreferenceDéjean, G., Blanvillainâ Baufumé, S., Boulanger, A., Darrasse, A., Bernonville, T.D.D., Girard, A.L, et al. ( 2013 ) The xylan utilization system of the plant pathogen Xanthomonas campestris pv campestris controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. New Phytol 198: 899 â 915.
dc.identifier.citedreferenceDodd, D., Mackie, R.I., and Cann, I.K.O. ( 2011 ) Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol Microbiol 79: 292 â 304.
dc.identifier.citedreferenceFerguson, A.D., and Deisenhofer, J. ( 2002 ) TonBâ dependent receptorsâ structural perspectives. Biochim Biophys Acta 1565: 318 â 332.
dc.identifier.citedreferenceFerrer, M., Golyshina, O.V., Chernikova, T.N., Khachane, A.N., Reyesâ Duarte, D., Santos, V.A., et al. ( 2005 ) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7: 1996 â 2010.
dc.identifier.citedreferenceHehemann, J.H., Correc, G., Barbeyron, T., Helbert, W., Czjzek, M., and Michel, G. ( 2010 ) Transfer of carbohydrateâ active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908 â 912.
dc.identifier.citedreferenceHess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., et al. ( 2011 ) Metagenomic discovery of biomassâ degrading genes and genomes from cow rumen. Science 331: 463 â 467.
dc.identifier.citedreferenceHoldeman, L.V., Cato, E.D., and Moore, W.E.C. ( 1977 ) Anaerobe Laboratory Manual, 4th ed. Blacksburg, VA: Virginia Polytechnic Institute and State University.
dc.identifier.citedreferenceJuncker, A.S., Willenbrock, H., Heijne, G.V., Brunak, S., Nielsen, H., and Krogh, A. ( 2003 ) Prediction of lipoprotein signal peptides in Gramâ negative bacteria. Protein Sci 12: 1652 â 1662.
dc.identifier.citedreferenceKoropatkin, N.M., Martens, E.C., Gordon, J.I., and Smith, T.J. ( 2008 ) Starch catabolism by a prominent human gut symbiont is directed by the recognition of amylose helices. Structure 16: 1105 â 1115.
dc.identifier.citedreferenceLam, K.N., and Charles, T.C. ( 2015 ) Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries. Microbiome 3: 22.
dc.identifier.citedreferenceLam, K.N., Cheng, J., Engel, K., Neufeld, J.D., and Charles, T.C. ( 2015 ) Current and future resources for functional metagenomics. Front Microbiol 6: 1196.
dc.identifier.citedreferenceLarsbrink, J., Izumi, A., Ibatullin, F.M., Nakhai, A., Gilbert, H.J., Davies, G.J., and Brumer, H. ( 2011 ) Structural and enzymatic characterization of a glycoside hydrolase family 31 α â xylosidase from Cellvibrio japonicus involved in xyloglucan saccharification. Biochem J 567 â 580.
dc.identifier.citedreferenceLarsbrink, J., Rogers, T.E., Hemsworth, G.R., McKee, L.S., Tauzin, A.S., Spadiut, O., et al. ( 2014 ) A discrete genetic locus confers xyloglucan metabolism in select human gut Bacteroidetes. Nature 506: 498 â 502.
dc.identifier.citedreferenceLivak, K.J., and Schmittgen, T.D. ( 2001 ) Analysis of relative gene expression data using realâ time quantitative PCR and the 2(â delta delta C(T)) method. Methods 25: 402 â 408.
dc.identifier.citedreferenceLoaces, I., Amarelle, V., and Muñozâ Gutierrez, I. ( 2015 ) Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation. Appl Environ Microbiol 99: 9049 â 9060.
dc.identifier.citedreferenceMarkowitz, V.M., Chen, I.M.A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., et al. ( 2012 ) IMG: the integrated microbial genomes database and comparative analysis system. Nucl Acids Res 40: D115 â D122.
dc.identifier.citedreferenceMartens, E.C., Lowe, E.C., Chiang, H., Pudlo, N. A., Wu, M., McNulty, N.P., et al. ( 2011 ) Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol 9: e1001221.
dc.identifier.citedreferenceMastropaolo, M.D., Thorson, M.L., and Stevens, A.M. ( 2009 ) Comparison of Bacteroides thetaiotaomicron and Escherichia coli 16S rRNA gene expression signals. Microbiology 155: 2683 â 2693.
dc.identifier.citedreferenceNielsen, H.B., Almeida, M., Juncker, A.S., Rasmussen, S., Li, J., Sunagawa, S., et al. ( 2014 ) Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat Biotechnol 32: 822 â 828.
dc.identifier.citedreferenceNoinaj, N., Guillier, M., Barnard, T.J., and Buchanan, S.K. ( 2010 ) TonBâ dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64: 43 â 60.
dc.identifier.citedreferenceNouaille, S., Even, S., Charlier, C., Loir, Y.L., Cocaignâ Bousquet, M., and Loubière, P. ( 2009 ) Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl Environ Microbiol 75: 4473 â 4482.
dc.identifier.citedreferenceOkuda, S., and Tokuda, H. ( 2011 ) Lipoprotein sorting in bacteria. Annu Rev Microbiol 65: 239 â 259.
dc.identifier.citedreferencePetersen, T.N., Brunak, S., Heijne, G.V., and Nielsen, H. ( 2011 ) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785 â 786.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.