Show simple item record

Synthesis and performance of a thermosetting resin: Acrylated epoxidized soybean oil curing with a rosin‐based acrylamide

dc.contributor.authorYang, Yanping
dc.contributor.authorShen, Minggui
dc.contributor.authorHuang, Xin
dc.contributor.authorZhang, Haibo
dc.contributor.authorShang, Shibin
dc.contributor.authorSong, Jie
dc.date.accessioned2017-01-06T20:50:04Z
dc.date.available2018-05-04T20:56:57Zen
dc.date.issued2017-03-05
dc.identifier.citationYang, Yanping; Shen, Minggui; Huang, Xin; Zhang, Haibo; Shang, Shibin; Song, Jie (2017). "Synthesis and performance of a thermosetting resin: Acrylated epoxidized soybean oil curing with a rosin‐based acrylamide." Journal of Applied Polymer Science 134(9): n/a-n/a.
dc.identifier.issn0021-8995
dc.identifier.issn1097-4628
dc.identifier.urihttps://hdl.handle.net/2027.42/135053
dc.description.abstractA synthesized rosin‐based polymeric monomer, N‐dehydroabietic acrylamide (DHA‐AM), was introduced into an acrylated epoxidized soybean oil (AESO)/DHA‐AM system to afford a thermosetting resin through thermocuring. Different molar ratios of the thermosetting AESO/DHA‐AM samples were obtained through curing in the presence of an initiator, and the curing processes of the AESO/DHA‐AM systems were evaluated by differential scanning calorimetry. The structures and performances of the resulting thermosets were characterized by Fourier transform infrared spectroscopy, dynamic mechanical analysis, elemental analysis, thermogravimetric analysis, and contact angle (θ) analysis. The analyses showed that with increasing content of DHA‐AM introduced into the copolymer, the storage modulus, glass‐transition temperature, thermal stability, and θ values of the cured samples all increased. Moreover, the copolymers changed from hydrophilic materials to hydrophobic materials. The results also demonstrate that the rosin acid derivatives showed comparable properties to those of reported petroleum‐based rigid compounds for the preparation of soybean‐oil‐based thermosets. The presence of DHA‐AM moieties in the composite structures could expand the use of AESO into the development of heat‐resistant and hydrophobic materials. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 44545.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherthermogravimetric analysis (TGA)
dc.subject.othercrosslinking
dc.subject.othermechanical properties
dc.subject.otherthermosets
dc.titleSynthesis and performance of a thermosetting resin: Acrylated epoxidized soybean oil curing with a rosin‐based acrylamide
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelManagement
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelBusiness and Economics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135053/1/app44545_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135053/2/app44545.pdf
dc.identifier.doi10.1002/app.44545
dc.identifier.sourceJournal of Applied Polymer Science
dc.identifier.citedreferenceMa, Q.; Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y. Green Chem. 2013, 15, 1300.
dc.identifier.citedreferenceLa Scala, J.; Wool, R. P. Polymer 2005, 46, 61.
dc.identifier.citedreferenceKhot, S. N.; Lascala, J. J.; Can, E.; Morye, S. S.; Williams, G. I.; Palmese, G. R.; Küsefoğlu, S. H.; Wool, R. P. J. Appl. Polym. Sci. 2001, 82, 703.
dc.identifier.citedreferenceGrishchuk, S.; Karger‐Kocsis, J. Express Polym. Lett. 2011, 5, 2.
dc.identifier.citedreferenceLu, J.; Khot, S.; Wool, R. P. Polymer 2005, 46, 71.
dc.identifier.citedreferenceCan, E.; Wool, R.; Küsefoğlu, S. J. Appl. Polym. Sci. 2006, 102, 1497.
dc.identifier.citedreferenceKundu, P. P.; Larock, R. C. Biomacromolecules 2005, 6, 797.
dc.identifier.citedreferenceLi, F.; Hanson, M.; Larock, R. Polymer 2001, 42, 1567.
dc.identifier.citedreferenceLu, Y.; Larock, R. C. J. Appl. Polym. Sci. 2006, 102, 3345.
dc.identifier.citedreferenceLu, Y.; Larock, R. C. Biomacromolecules 2006, 7, 2692.
dc.identifier.citedreferenceAndjelkovic, D. D.; Larock, R. C. Biomacromolecules 2006, 7, 927.
dc.identifier.citedreferenceCampanella, A.; Scala, J. J. L.; Wool, R. J. Appl. Polym. Sci. 2011, 119, 1000.
dc.identifier.citedreferenceFertier, L.; Koleilat, H.; Stemmelen, M.; Giani, O.; Joly‐Duhamel, C.; Lapinte, V.; Robin, J.‐J. Prog. Polym. Sci. 2013, 38, 932.
dc.identifier.citedreferenceDong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C.; Shi, S. Q.; Cai, L. Eur. J. Wood Wood Prod. 2016, 74, 177.
dc.identifier.citedreferenceLiu, X.; Huang, W.; Jiang, Y.; Zhu, J.; Zhang, C. Express Polym. Lett. 2012, 6, 293.
dc.identifier.citedreferenceMustata, F. R.; Tudorachi, N. Ind. Eng. Chem. Res. 2010, 49, 12414.
dc.identifier.citedreferenceYao, F.; Zhang, D.; Zhang, C.; Yang, W.; Deng, J. Bioresour. Technol. 2013, 129, 58.
dc.identifier.citedreferenceLiu, X.; Xin, W.; Zhang, J. Bioresour. Technol. 2010, 101, 2520.
dc.identifier.citedreferenceKim, S. J.; Kim, B. J.; Jang, D. W.; Kim, S. H.; Park, S. Y.; Lee, J. H.; Lee, S. D.; Choi, D. H. J. Appl. Polym. Sci. 2001, 79, 687.
dc.identifier.citedreferenceRay, S. S.; Kundu, A.; Ghosh, M.; Maiti, S. Eur. Polym. J. 1985, 21, 131.
dc.identifier.citedreferenceMa, S.; Li, T.; Liu, X.; Zhu, J. Polym. Int. 2016, 65, 164.
dc.identifier.citedreferenceYang, Y.; Shen, M.; Liu, H.; Shang, S.; Song, Z. Biomass Chem. Eng. 2016, 50, 6.
dc.identifier.citedreferenceTao, Z.; Yang, S.; Chen, J.; Fan, L. Eur. Polym. J. 2007, 43, 1470.
dc.identifier.citedreferenceReddy, T. T.; Hadano, M.; Takahara, A. Macromol. Symp. 2006, 242, 241.
dc.identifier.citedreferenceYang, X.; Li, S.; Xia, J.; Song, J.; Huang, K.; Li, M. Ind. Crops Prod. 2015, 63, 17.
dc.identifier.citedreferenceHenna, P.; Larock, R. C. J. Appl. Polym. Sci. 2009, 112, 1788.
dc.identifier.citedreferenceHuang, Y.; Pang, L.; Wang, H.; Zhong, R.; Zeng, Z.; Yang, J. Prog. Org. Coat. 2013, 76, 654.
dc.identifier.citedreferenceMcCormick, C. L.; Chen, G. S.; Hutchinson, B. H. J. Appl. Polym. Sci. 1982, 27, 3103.
dc.identifier.citedreferenceMustata, F.; Tudorachi, N.; Rosu, D. Compos. B 2011, 42, 1803.
dc.identifier.citedreferenceBiermann, U.; Bornscheuer, U.; Meier, M. A.; Metzger, J. O.; Schäfer, H. J. Angew. Chem. Int. Ed. 2011, 50, 3854.
dc.identifier.citedreferenceHuang, X.; Liu, H.; Shang, S.; Rao, X.; Song, J. J. Agric. Food Chem. 2015, 63, 9062.
dc.identifier.citedreferenceSuman, M.; La Tegola, S.; Catellani, D.; Bersellini, U. J. Agric. Food Chem. 2005, 53, 9879.
dc.identifier.citedreferenceWebster, D. C.; Sengupta, P. P.; Chen, Z.; Pan, X.; Paramarta, A. U.S. Pat. 9,096,773 ( 2015 ).
dc.identifier.citedreferenceAdhvaryu, A.; Erhan, S. Ind. Crops Prod. 2002, 15, 247.
dc.identifier.citedreferenceGu, H.; Ren, K.; Martin, D.; Marino, T.; Neckers, D. C. J. Coat. Technol. 2002, 74, 49.
dc.identifier.citedreferenceBajpai, M.; Shukla, V.; Singh, D.; Singh, M.; Shukla, R. Pigment Resin Technol. 2004, 33, 160.
dc.identifier.citedreferenceLiu, Z.; Erhan, S. Z.; Xu, J. Polymer 2005, 46, 10119.
dc.identifier.citedreferenceLee, S.‐H.; Lee, S.‐Y.; Lim, H.‐K.; Nam, J.‐D.; Kye, H.‐S.; Lee, Y.‐K. Polym. Korea 2006, 30, 202.
dc.identifier.citedreferenceZhan, M.; Wool, R. P. J. Appl. Polym. Sci. 2010, 118, 3274.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.