Show simple item record

A Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling

dc.contributor.authorBruno, Paul A.
dc.contributor.authorMorriss‐andrews, Alex
dc.contributor.authorHenderson, Andrew R.
dc.contributor.authorBrooks, Charles L.
dc.contributor.authorMapp, Anna K.
dc.date.accessioned2017-01-06T20:50:47Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11-21
dc.identifier.citationBruno, Paul A.; Morriss‐andrews, Alex ; Henderson, Andrew R.; Brooks, Charles L.; Mapp, Anna K. (2016). "A Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling." Angewandte Chemie International Edition 55(48): 14997-15001.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/135096
dc.description.abstractAberrant canonical NFâ κB signaling is implicated in diseases from autoimmune disorders to cancer. A major therapeutic challenge is the need for selective inhibition of the canonical pathway without impacting the many nonâ canonical NFâ κB functions. Here we show that a selective peptideâ based inhibitor of canonical NFâ κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a nonâ labile bond, shows an about 10â fold increased potency relative to the original inhibitor. Not only is this molecule, NBD2, a powerful tool for dissection of canonical NFâ κB signaling in disease models and healthy tissues, the success of the synthetic loop replacement suggests that the general strategy could be useful for discovering modulators of the many proteinâ protein interactions mediated by such structures.A peptideâ based inhibitor of canonical NFâ κB signaling, in which a hydrogen bond in the NBD peptide is synthetically replaced by a nonâ labile bond, shows an about 10â fold increased potency relative to the original inhibitor. The success of the synthetic replacement of a peptide loop suggests that the general strategy could be broadly useful for discovering modulators of many proteinâ protein interactions mediated by such structures.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpeptidomimetics
dc.subject.otherpeptide loops
dc.subject.otherproteinâ protein interactions
dc.subject.othermedical chemistry
dc.subject.otherinhibitors
dc.titleA Synthetic Loop Replacement Peptide That Blocks Canonical NFâ κB Signaling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135096/1/anie201607990.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135096/2/anie201607990-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201607990
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceN. D. Perkins, Nat. Rev. Mol. Cell Biol. 2007, 8, 49 â 62.
dc.identifier.citedreferenceR. N. Chapman, G. Dimartino, P. S. Arora, J. Am. Chem. Soc. 2004, 126, 12252 â 12253.
dc.identifier.citedreferenceP. S. Kutchukian, J. S. Yang, G. L. Verdine, E. I. Shakhnovich, J. Am. Chem. Soc. 2009, 131, 4622 â 4627.
dc.identifier.citedreferenceC. E. Schafmeister, J. Po, G. L. Verdine, J. Am. Chem. Soc. 2000, 122, 5891 â 5892.
dc.identifier.citedreferenceK. Khaja, P. Robbins, Pharmaceuticals 2010, 3, 110 â 124.
dc.identifier.citedreferenceN. J. Greenfield, Nat. Protoc. 2006, 1, 2876 â 2890.
dc.identifier.citedreferenceThe construct NBD1, which contains the unmetathesized allylglycine residues, also exhibited dose-dependent inhibition of NF-κB driven luciferase activity. However, the NBD1 construct also exhibited dose-dependent inhibition of the constitutively expressed β-gal reporter signal consistent with off-target activities and thus, was excluded from further study.
dc.identifier.citedreferenceJ. H. Kwon, S. Keates, S. Simeonidis, F. Grall, T. A. Libermann, A. C. Keates, J. Biol. Chem. 2003, 278, 875 â 884.
dc.identifier.citedreferenceT. Nakayama, R. Fujisawa, H. Yamada, T. Horikawa, H. Kawasaki, K. Hieshima, D. Izawa, S. Fujiie, T. Tezuka, O. Yoshie, Int. Immunol. 2001, 13, 95 â 103.
dc.identifier.citedreferenceC. Kunsch, C. A. Rosen, Mol. Cell. Biol. 1993, 13, 6137 â 6146.
dc.identifier.citedreferenceS. Lee, Y. J. Kim, S. Kwon, Y. Lee, S. Y. Choi, J. Park, BMB Rep. 2009, 42, 265 â 270.
dc.identifier.citedreferenceF. Wang, Y. Shi, S. Yadav, H. Wang, Toxicology 2010, 273, 8 â 12.
dc.identifier.citedreferenceC. Albanese, K. Wu, M. D’Amico, C. Jarrett, D. Joyce, J. Hughes, J. Hulit, T. Sakamaki, M. Fu, A. Ben-Ze’ev, etâ al., Mol. Biol. Cell 2003, 14, 585 â 599.
dc.identifier.citedreferenceS. D. Westerheide, M. W. Mayo, V. Anest, J. L. Hanson, A. S. Baldwin, Mol. Cell. Biol. 2001, 21, 8428 â 8436.
dc.identifier.citedreferenceK.-J. Park, V. Krishnan, B. W. O’Malley, Y. Yamamoto, R. B. Gaynor, Mol. Cell 2005, 18, 71 â 82.
dc.identifier.citedreferenceJ. Zhang, M. A. Warren, S. F. Shoemaker, M. M. Ip, Endocrinology 2007, 148, 268 â 278.
dc.identifier.citedreferenceFor previous work replacing nonpolar interactions with hydrocarbon tethers see referencesâ [40â 42].
dc.identifier.citedreferenceA. Glas, D. Bier, G. Hahne, C. Rademacher, C. Ottmann, T. N. Grossmann, Angew. Chem. Int. Ed. 2014, 53, 2489 â 2493; Angew. Chem. 2014, 126, 2522 â 2526.
dc.identifier.citedreferenceY. Shin, K. A. Winans, B. J. Backes, S. B. H. Kent, A. J. A. Ellman, C. R. Bertozzi, J. Am. Chem. Soc. 1999, 121, 11684 â 11689.
dc.identifier.citedreferenceJ. F. Reichwein, C. Versluis, R. M. Liskamp, J. Org. Chem. 2000, 65, 6187 â 6195.
dc.identifier.citedreferenceS. M. Miles, R. J. Leatherbarrow, S. P. Marsden, W. J. Coates, Org. Biomol. Chem. 2004, 2, 281 â 283.
dc.identifier.citedreferenceJ. Gavenonis, B. A. Sheneman, T. R. Siegert, M. R. Eshelman, J. A. Kritzer, Nat. Chem. Biol. 2014, 10, 716 â 722.
dc.identifier.citedreferenceM. Guharoy, P. Chakrabarti, Bioinformatics 2007, 23, 1909 â 1918.
dc.identifier.citedreferenceA. L. Garner, K. D. Janda, Curr. Top. Med. Chem. 2011, 11, 258 â 280.
dc.identifier.citedreferenceB. Hoesel, J. A. Schmid, Mol. Cancer 2013, 12, 86.
dc.identifier.citedreferenceJ. Albert, S. Baldwin, J. Clin. Invest. 2001, 107, 3 â 6.
dc.identifier.citedreferenceB. O. Villoutreix, M. A. Kuenemann, J.-L. Poyet, H. Bruzzoni-Giovanelli, C. Labbé, D. Lagorce, O. Sperandio, M. A. Miteva, Mol. Inf. 2014, 33, 414 â 437.
dc.identifier.citedreferenceL. N. Makley, J. E. Gestwicki, Chem. Biol. Drug Des. 2013, 81, 22 â 32.
dc.identifier.citedreferenceG. L. Verdine, L. D. Walensky, Clin. Cancer Res. 2007, 13, 7264 â 7270.
dc.identifier.citedreferenceM. S. Golden, S. M. Cote, M. Sayeg, B. S. Zerbe, E. A. Villar, D. Beglov, S. L. Sazinsky, R. M. Georgiadis, S. Vajda, D. Kozakov, etâ al., J. Am. Chem. Soc. 2013, 135, 6242 â 6256.
dc.identifier.citedreferenceM. Rushe, L. Silvian, S. Bixler, L. L. Chen, A. Cheung, S. Bowes, H. Cuervo, S. Berkowitz, T. Zheng, K. Guckian, etâ al., Structure 2008, 16, 798 â 808.
dc.identifier.citedreferenceA. V. Gasparian, Y. J. Yao, D. Kowalczyk, L. A. Lyakh, A. Karseladze, T. J. Slaga, I. V. Budunova, J. Cell Sci. 2002, 115, 141 â 151.
dc.identifier.citedreferenceE. Zandi, D. M. Rothwarf, M. Delhase, M. Hayakawa, Cell 1997, 91, 243 â 252.
dc.identifier.citedreferenceC. Makris, V. L. Godfrey, G. Krähn-Senftleben, T. Takahashi, J. L. Roberts, T. Schwarz, L. Feng, R. S. Johnson, M. Karin, Mol. Cell 2000, 5, 969 â 979.
dc.identifier.citedreferenceA. Oeckinghaus, M. S. Hayden, S. Ghosh, Nat. Immunol. 2011, 12, 695 â 708.
dc.identifier.citedreferenceM. J. May, F. D’Acquisto, L. A. Madge, J. Glöckner, J. S. Pober, S. Ghosh, Science 2000, 289, 1550 â 1554.
dc.identifier.citedreferenceM. J. May, R. B. Marienfeld, S. Ghosh, J. Biol. Chem. 2002, 277, 45992 â 46000.
dc.identifier.citedreferenceI. Strickland, S. Ghosh, Ann. Rheum. Dis. 2006, 65 Suppl 3, iii 75 â 82.
dc.identifier.citedreferenceD. A. Delfín, Y. Xu, J. M. Peterson, D. C. Guttridge, J. A. Rafael-Fortney, P. M. Janssen, J. Transl. Med. 2011, 9, 68.
dc.identifier.citedreferenceK. K. Rehman, S. Bertera, R. Bottino, A. N. Balamurugan, J. C. Mai, Z. Mi, M. Trucco, P. D. Robbins, J. Biol. Chem. 2003, 278, 9862 â 9868.
dc.identifier.citedreferenceInspired by success reported by others in the stabilization of canonical secondary structures such as α-helices and β-strands, referencesâ [19â 25].
dc.identifier.citedreferenceL. K. Henchey, S. Kushal, R. Dubey, R. N. Chapman, B. Z. Olenyuk, P. S. Arora, J. Am. Chem. Soc. 2010, 132, 941 â 943.
dc.identifier.citedreferenceL. D. Walensky, K. Pitter, J. Morash, K. J. Oh, S. Barbuto, J. Fisher, E. Smith, G. L. Verdine, S. J. Korsmeyer, Mol. Cell 2006, 24, 199 â 210.
dc.identifier.citedreferenceP.-N. Cheng, C. Liu, M. Zhao, D. Eisenberg, J. S. Nowick, Nat. Chem. 2012, 4, 927 â 933.
dc.identifier.citedreferenceR. N. Chapman, P. S. Arora, Org. Lett. 2006, 8, 5825 â 5828.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.