Show simple item record

A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter

dc.contributor.authorLitzenberg, Dale W.
dc.contributor.authorGallagher, Ian
dc.contributor.authorMasi, Kathryn J.
dc.contributor.authorLee, Choonik
dc.contributor.authorPrisciandaro, Joann I.
dc.contributor.authorHamstra, Daniel A.
dc.contributor.authorRitter, Timothy
dc.contributor.authorLam, Kwok L.
dc.date.accessioned2017-01-06T20:50:51Z
dc.date.available2017-01-06T20:50:51Z
dc.date.issued2013-08
dc.identifier.citationLitzenberg, Dale W.; Gallagher, Ian; Masi, Kathryn J.; Lee, Choonik; Prisciandaro, Joann I.; Hamstra, Daniel A.; Ritter, Timothy; Lam, Kwok L. (2013). "A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter." Medical Physics 40(8): n/a-n/a.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135100
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMedical imaging
dc.subject.otherTherapeutic applications, including brachytherapy
dc.subject.otherStandards and calibration
dc.subject.otherbiomedical imaging
dc.subject.othercalibration
dc.subject.othercancer
dc.subject.othercollimators
dc.subject.otherquality assurance
dc.subject.otherradiation therapy
dc.subject.othertracking
dc.subject.othertransponders
dc.subject.otherelectromagnetic tracking
dc.subject.otherWinston‐Lutz
dc.subject.otherstar shot
dc.subject.othercalibration
dc.subject.otherradiation isocenter
dc.subject.otherRadiation therapy
dc.subject.otherTesting or calibrating of apparatus or arrangements provided for in groups G01D1/00 to G01D15/00
dc.subject.otherCalibrating of instruments or apparatus
dc.subject.otherResponders; Transponders
dc.subject.otherCalibration
dc.subject.otherRadiosurgery
dc.subject.otherTracking devices
dc.subject.otherCollimation
dc.subject.otherCollimators
dc.subject.otherElectromagnetic radiation
dc.subject.otherInductors
dc.subject.otherRadiation treatment
dc.subject.otherRotation measurement
dc.titleA measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109‐5010
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135100/1/mp3910.pdf
dc.identifier.doi10.1118/1.4813910
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceL. Santanam, C. Noel, T. R. Willoughby, J. Esthappan, S. Mutic, E. E. Klein, D. A. Low, P. J. Parikh, J. J. Gordon, A. J. Crimaldi, M. Hagan, J. Moore, and J. V. Siebers, “ Quality assurance for clinical implementation of an electromagnetic tracking system,” Med. Phys. 36, 3477 – 3486 ( 2009 ). 10.1118/1.3158812
dc.identifier.citedreferenceThis accuracy value is found in version 2.0 of the Calypso User Manual, section 1.7 (LBL0008‐007).
dc.identifier.citedreferenceK. R. Winston and W. Lutz, “ Linear accelerator as a neurosurgical tool for stereotactic radiosurgery,” Neurosurgery 22, 454 – 464 ( 1988 ). 10.1227/00006123‐198803000‐00002
dc.identifier.citedreferenceT. Willoughby, J. Lehmann, J. A. Bencomo, S. K. Jani, L. Santanam, A. Sethi, T. D. Solberg, W. A. Tome, and T. J. Waldron, “ Quality assurance for nonradiographic radiotherapy localization and positioning systems: Report of Task Group 147,” Med. Phys. 39, 1728 – 1747 ( 2012 ). 10.1118/1.3681967
dc.identifier.citedreferenceW. Du and S. Gao, “ Measuring the wobble of radiation field centers during gantry rotation and collimator movement on a linear accelerator,” Med. Phys. 38, 4575 – 4578 ( 2011 ). 10.1118/1.3609098
dc.identifier.citedreferenceP. Skworcow, J. A. Mills, O. C. Haas, and K. J. Burnham, “ A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries,” Phys. Med. Biol. 52, 7109 – 7124 ( 2007 ). 10.1088/0031‐9155/52/23/022
dc.identifier.citedreferenceM. K. Woo, P. O’Brien, B. Gillies, and R. Etheridge, “ Mechanical and radiation isocenter coincidence: An experience in linear accelerator alignment,” Med. Phys. 19, 357 – 359 ( 1992 ). 10.1118/1.596866
dc.identifier.citedreferenceA. Gonzalez, I. Castro, and J. A. Martinez, “ A procedure to determine the radiation isocenter size in a linear accelerator,” Med. Phys. 31, 1489 – 1493 ( 2004 ). 10.1118/1.1755491
dc.identifier.citedreferenceR. Nath, P. J. Biggs, F. J. Bova, C. C. Ling, J. A. Purdy, J. van de Geijn, and M. S. Weinhous, “ AAPM code of practice for radiotherapy accelerators: Report of AAPM Radiation Therapy Task Group No. 45,” Med. Phys. 21, 1093 – 1121 ( 1994 ). 10.1118/1.597398
dc.identifier.citedreferenceW. Lutz, K. R. Winston, and N. Maleki, “ A system for stereotactic radiosurgery with a linear accelerator,” Int. J. Radiat. Oncol., Biol., Phys. 14, 373 – 381 ( 1988 ). 10.1016/0360‐3016(88)90446‐4
dc.identifier.citedreferenceF. Rosca, F. Lorenz, F. L. Hacker, L. M. Chin, N. Ramakrishna, and P. Zygmanski, “ An MLC‐based linac QA procedure for the characterization of radiation isocenter and room lasers’ position,” Med. Phys. 33, 1780 – 1787 ( 2006 ). 10.1118/1.2198171
dc.identifier.citedreferenceP. Rowshanfarzad, M. Sabet, D. J. O’Connor, and P. B. Greer, “ Investigation of the sag in linac secondary collimator and MLC carriage during arc deliveries,” Phys. Med. Biol. 57, N209 – N224 ( 2012 ). 10.1088/0031‐9155/57/12/N209
dc.identifier.citedreferenceVarian Medical Systems, Palo Alto, CA (private communication).
dc.identifier.citedreferenceP. Rowshanfarzad, M. Sabet, D. J. O’Connor, and P. B. Greer, “ Isocenter verification for linac‐based stereotactic radiation therapy: Review of principles and techniques,” J. Appl. Clin. Med. Phys. 12, 185 – 195 ( 2011 ).
dc.identifier.citedreferenceH. Lukka, C. Hayter, J. A. Julian, P. Warde, W. J. Morris, M. Gospodarowicz, M. Levine, J. Sathya, R. Choo, H. Prichard, M. Brundage, and W. Kwan, “ Randomized trial comparing two fractionation schedules for patients with localized prostate cancer,” J. Clin. Oncol. 23, 6132 – 6138 ( 2005 ). 10.1200/JCO.2005.06.153
dc.identifier.citedreferenceRTOG 9406, A phase I/II dose escalation study using three dimensional conformal radiation therapy for adenocarcinoma of the prostate (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=9406 ).
dc.identifier.citedreferenceRTOG 0415, A phase III randomized study of hypofractionated 3DCRT/IMRT versus conventionally fractionated 3DCRT/IMRT in patients treated for favorable‐risk prostate cancer (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0415 ).
dc.identifier.citedreferenceH. M. Sandler, P. Y. Liu, R. L. Dunn, D. C. Khan, S. E. Tropper, M. G. Sanda, and C. A. Mantz, “ Reduction in patient‐reported acute morbidity in prostate cancer patients treated with 81‐Gy intensity‐modulated radiotherapy using reduced planning target volume margins and electromagnetic tracking: Assessing the impact of margin reduction study,” Urology 75, 1004 – 1008 ( 2010 ). 10.1016/j.urology.2009.10.072
dc.identifier.citedreferenceRTOG 0938, A randomized phase II trial of hypofractionated radiotherapy for favorable risk prostate cancer‐RTOG CCOP study (available URL: http://www.rtog.org/ClinicalTrials/ProtocolTable/StudyDetails.aspx?study=0938 ).
dc.identifier.citedreferenceJ. M. Balter, J. N. Wright, L. J. Newell, B. Friemel, S. Dimmer, Y. Cheng, J. Wong, E. Vertatschitsch, and T. P. Mate, “ Accuracy of a wireless localization system for radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 61, 933 – 937 ( 2005 ). 10.1016/j.ijrobp.2004.11.009
dc.identifier.citedreferenceL. Santanam, K. Malinowski, J. Hubenshmidt, S. Dimmer, M. L. Mayse, J. Bradley, A. Chaudhari, K. Lechleiter, S. K. M. Goddu, J. Esthappan, S. Mutic, D. A. Low, and P. Parikh, “ Fiducial‐based translational localization accuracy of electromagnetic tracking system and on‐board kilovoltage imaging system,” Int. J. Radiat. Oncol., Biol., Phys. 70, 892 – 899 ( 2008 ). 10.1016/j.ijrobp.2007.10.005
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.