Show simple item record

Indoor inhalation intake fractions of fine particulate matter: review of influencing factors

dc.contributor.authorHodas, N.
dc.contributor.authorLoh, M.
dc.contributor.authorShin, H.‐m.
dc.contributor.authorLi, D.
dc.contributor.authorBennett, D.
dc.contributor.authorMcKone, T. E.
dc.contributor.authorJolliet, O.
dc.contributor.authorWeschler, C. J.
dc.contributor.authorJantunen, M.
dc.contributor.authorLioy, P.
dc.contributor.authorFantke, P.
dc.date.accessioned2017-01-06T20:50:54Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-12
dc.identifier.citationHodas, N.; Loh, M.; Shin, H.‐m. ; Li, D.; Bennett, D.; McKone, T. E.; Jolliet, O.; Weschler, C. J.; Jantunen, M.; Lioy, P.; Fantke, P. (2016). "Indoor inhalation intake fractions of fine particulate matter: review of influencing factors." Indoor Air 26(6): 836-856.
dc.identifier.issn0905-6947
dc.identifier.issn1600-0668
dc.identifier.urihttps://hdl.handle.net/2027.42/135104
dc.description.abstractExposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of buildingâ specific, humanâ specific, and pollutantâ specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier, a literature review was conducted and data characterizing factors influencing iFin,total were compiled. In addition to providing data for the calculation of iFin,total in various indoor environments and for a range of geographic regions, this paper discusses remaining limitations to the incorporation of PM2.5â derived health impacts into life cycle assessments and makes recommendations regarding future research.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherVentilation
dc.subject.otherFine particulate matter
dc.subject.otherIndoor air
dc.subject.otherIntake fraction
dc.subject.otherLife cycle impact assessment
dc.subject.otherHuman exposure
dc.titleIndoor inhalation intake fractions of fine particulate matter: review of influencing factors
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135104/1/ina12268.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135104/2/ina12268_am.pdf
dc.identifier.doi10.1111/ina.12268
dc.identifier.sourceIndoor Air
dc.identifier.citedreferenceSmith, K.R. ( 1988 ) Air pollution: assessing total exposure in developing countries, Environment, 30, 16 â 35.
dc.identifier.citedreferenceWallace, L., Kindzierski, W., Kearney, J., MacNeill, M., Héroux, M.â à . and Wheeler, A.J. ( 2013 ) Fine and ultrafine particle decay rates in multiple homes, Environ. Sci. Technol., 47, 12929 â 12937.
dc.identifier.citedreferenceWalton, G.N. and Dols, W.S. ( 2013 ) CONTAM 2.4 User Guide and Program Documentation, Gaithersburg, MD, National Institute of Standards and Technology.
dc.identifier.citedreferenceWang, L. and Chen, Q. ( 2007 ) Theoretical and numerical studies of coupling multizone and CFD models for building air distribution simulations, Indoor Air, 17, 348 â 361.
dc.identifier.citedreferenceWang, H., He, C., Morawska, L., McGarry, P. and Johnson, G. ( 2012 ) Ozoneâ initiated particle formation, particle aging, and precursors in a laser printer, Environ. Sci. Technol., 46, 704 â 712.
dc.identifier.citedreferenceWargocki, P., Sundel, J., Bischof, W., Brundrett, G., Fanger, P.O., Gyntelberg, F., Hanssen, S.O., Harrison, P., Pickering, A., Seppänen, O. and Wouters, P. ( 2002 ) Ventiltion and health in nonâ industrial indoor environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN), Indoor Air, 12, 113 â 128.
dc.identifier.citedreferenceWaring, M.S. ( 2014 ) Secondary organic aerosols in residences: predicting its fraction of fine particle mass and determinants of formation strength, Indoor Air, 24, 376 â 389.
dc.identifier.citedreferenceWaring, M.S. and Siegel, J.A. ( 2008 ) Particle loading rates for HVAC filters, heat exchangers, and ducts, Indoor Air, 18, 209 â 224.
dc.identifier.citedreferenceWaring, M.S. and Siegel, J.A. ( 2010 ) The influence of HVAC systems on indoor secondary organic aerosol formation, ASHRAE Trans., 116, 556 â 571.
dc.identifier.citedreferenceWaring, M.S. and Siegel, J.A. ( 2013 ) Indoor secondary organic aerosol formation initiated from reactions between ozone and surfaceâ sorbed Dâ limonene, Environ. Sci. Technol., 47, 6341 â 6348.
dc.identifier.citedreferenceWaring, M.S., Wells, J.R. and Siegel, J.A. ( 2011 ) Secondary organic aerosol formation from ozone reactions with single terpenoids and terpenoid mixtures, Atmos. Environ., 45, 4235 â 4242.
dc.identifier.citedreferenceWeschler, C.J. ( 2000 ) Ozone in indoor environments: concentration and chemistry, Indoor Air, 10, 269 â 288.
dc.identifier.citedreferenceWeisel, C.P., Zhang, J., Turpin, B.J., Morandi, M.T., Colome, S., Stock, T.H., Spektor, D.M., Korn, L., Winer, A., Alimokhtari, S., Kwon, J., Mohan, K., Harrington, R., Giovanetti, R., Cui, W., Afshar, M., Maberti, S. and Shendell, D. ( 2005 ) Relationship of Indoor, Outdoor and Personal Air (RIOPA) study: study design, methods and quality assurance/control results, J. Expo. Anal. Environ. Epidemiol., 15, 123 â 137.
dc.identifier.citedreferenceWeschler, C.J. ( 2006 ) Ozone’s impact on public health: contributions from indoor exposures to ozone and products of ozoneâ initiated chemistry, Environ. Health Perspect., 114, 1489 â 1496.
dc.identifier.citedreferenceWeschler, C.J. ( 2011 ) Chemistry in indoor environments: 20 years of research, Indoor Air, 21, 205 â 218.
dc.identifier.citedreferenceWeschler, C.J. and Nazaroff, W.W. ( 2008 ) Semivolatile organic compounds in indoor environments, Atmos. Environ., 42, 9018 â 9040.
dc.identifier.citedreferenceWeschler, C.J. and Nazaroff, W.W. ( 2010 ) SVOC partitioning between the gas phase and settled dust indoors, Atmos. Environ., 44, 3609 â 3620.
dc.identifier.citedreferenceWeschler, C.J. and Shields, H.C. ( 1999 ) Indoor ozone/terpene reactions as a source of indoor particles, Atmos. Environ., 33, 2301 â 2312.
dc.identifier.citedreferenceWeschler, C.J., Shields, H.C. and Shah, B.M. ( 1996 ) Understanding and reducing indoor concentration of submicron particles at a commercial building in southern California, J. Air Waste Manag. Assoc., 46, 291 â 299.
dc.identifier.citedreferenceWilliams, P.R.D. and Unice, K. ( 2013 ) Field study of air exchange rates in northern Highlands of Peru, Environ. Forensic., 14, 215 â 229.
dc.identifier.citedreferenceWorld Health Organization (WHO) ( 2002 ) The Health Effects of Indoor Air Pollution Exposure in Developing Countries, Geneva, Switzerland, WHO.
dc.identifier.citedreferenceWorld Health Organization (WHO) ( 2013 ) Review of Evidence on Health Aspects of Air Pollution â REVIHAAP Project: Technical Report, Geneva, Switzerland, WHO.
dc.identifier.citedreferenceXiao, J., Shen, Y., Ge, J., Tateishi, R., Tang, C., Liang, Y. and Huang, Z. ( 2006 ) Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing, Landscape Urban Plann., 75, 69 â 80.
dc.identifier.citedreferenceYoussefi, S. and Waring, M.S. ( 2014 ) Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios, Environ. Sci. Technol., 48, 7899 â 7908.
dc.identifier.citedreferenceZaatari, M., Nirlo, E., Jareemit, D., Crain, N., Srebric, J. and Siegel, J. ( 2014 ) Ventilation and indoor air quality in retail stores: a critical review (RPâ 1596), HVAC & R. Res., 20, 276 â 294.
dc.identifier.citedreferenceZhang, Z. and Chen, Q. ( 2007 ) Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces, Atmos. Environ., 41, 5236 â 5248.
dc.identifier.citedreferenceZhang, X., Arnot, J.A. and Wania, F. ( 2014 ) Model for screeningâ level assessment of nearâ field human exposure to neutral organic chemicals released indoors, Environ. Sci. Technol., 48, 12312 â 12319.
dc.identifier.citedreferenceZhao, B. and Guan, P. ( 2007 ) Modeling particle dispersion in personalized ventilated room, Build. Environ., 42, 1099 â 1109.
dc.identifier.citedreferenceZhao, B., Yang, C., Yang, X. and Liu, S. ( 2008 ) Particle dispersion and deposition in ventilated rooms: testing and evaluation of different Eulerian and Lagrangian models, Build. Environ., 43, 388 â 397.
dc.identifier.citedreferenceZhao, Y., Wang, S., Chen, G., Wang, F., Aunan, K. and Hao, J. ( 2009 ) Microenvironmental timeâ activity patterns in Chongqing, China, Front. Environ. Sci. Eng. China, 3, 200 â 209.
dc.identifier.citedreferenceZota, A., Adamkiewicz, G., Levy, J.I. and Spengler, J.D. ( 2005 ) Ventilation in public housing: implications for indoor nitrogen dioxide concentrations, Indoor Air, 15, 393 â 401.
dc.identifier.citedreferenceZuraimi, M.S., Weschler, C.J., Tham, K.W. and Fadeyi, M.O. ( 2007 ) The impact of building recirculation rates on secondary organic aerosols generated by indoor chemistry, Atmos. Environ., 41, 5213 â 5223.
dc.identifier.citedreferenceAbt, E., Suh, H.H., Catalano, P. and Koutrakis, P. ( 2000 ) Relative contribution of outdoor and indoor particles sources to indoor concentrations, Environ. Sci. Technol., 34, 3579 â 3587.
dc.identifier.citedreferenceAdams, W.C. ( 1993 ) Measurement of breathing rate and volume in routinely performed daily activities. Contract No. A033â 205 Air Resources Board, Sacramento, CA.
dc.identifier.citedreferenceAelenei, D., Azevedo, S., Viegas, J., Mendes, A., Papoila, A.L., Cano, M., Martins, P. and Neuparth, N. ( 2013 ) Environment and health in children day care centers in Portugal. Results from phase II on the ventilation characteristics of 16 schools, 11th Annual REHVA World Congress and 8th International Conference on IAQVEC.
dc.identifier.citedreferenceAfshari, A., Matson, U. and Ekberg, L.E. ( 2005 ) Characterization of indoor sources of fine and ultrafine particles: a study conducted in a fullâ scale chamber, Indoor Air, 15, 141 â 150.
dc.identifier.citedreferenceAllen, R.W., Adar, S.D., Avol, E., Cohen, M., Curl, C.L., Larson, T., Liu, L.â J.S., Sheppard, L. and Kaufman, J.D. ( 2012 ) Modeling the residential infiltration of outdoor PM2.5 in the Multiâ Ethnic Study of Atherosclerosis and Air Pollution (MESA Air), Environ. Health Perspect., 120, 824 â 830.
dc.identifier.citedreferenceApple, J., Vincete, R., Yarberry, A., Lohse, N., Mills, E., Jacobson, A. and Poppendieck, D. ( 2010 ) Characterization of particulate matter size distributions and indoor concentrations from kerosene and diesel lamps, Indoor Air, 20, 399 â 411.
dc.identifier.citedreferenceArmendárizâ Arnez, C., Edwards, R.D., Johnson, M., Rosas, I.A., Espinosa, F. and Masera, O.R. ( 2010 ) Indoor particle size distributions in homes with open fires and improved Patsari cook stoves, Atmos. Environ., 44, 2881 â 2886.
dc.identifier.citedreferenceAsikainen, A., Hanninen, O., Brelih, N., Bischof, W., Hartmann, T., Carrer, P. and Wargocki, P. ( 2013 ) The proportion of residences in European countries with ventilation rates below the regulation base limit value, Int. J. Vent., 12, 129 â 134.
dc.identifier.citedreferenceAustralian Centre for Human Health Risk Assessment ( 2012 ) Office of Health Protection of the Australian Government Department of Health Australian Exposure Factor Guide, http://www.health.gov.au/internet/main/publishing.nsf/Content/health-pubhlth-publicat-environ.htm.
dc.identifier.citedreferenceAzimi, P., Zhao, D. and Stephens, B. ( 2014 ) Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin, Atmos. Environ., 98, 337 â 346.
dc.identifier.citedreferenceBaek, S., Kim, Y. and Perry, R. ( 1997 ) Indoor air quality in homes, offices and restaurants in Korean urban areas â indoorâ outdoor relationships, Atmos. Environ., 3, 529 â 544.
dc.identifier.citedreferenceBari, M.A., MacNeill, M., Kindzierski, W.B., Wallace, L., Héroux, M.â à . and Wheeler, A.J. ( 2014 ) Predictors of coarse particulate matter and associated endotoxin concentrations in residential environments, Atmos. Environ., 92, 221 â 230.
dc.identifier.citedreferenceBennett, D.H. and Furtaw, E.J. Jr ( 2004 ) Fugacityâ based indoor residential pesticide fate model, Environ. Sci. Technol., 38, 2142 â 2152.
dc.identifier.citedreferenceBennett, D.H., McKone, T.H., Evans, J.S., Nazaroff, W.W., Margni, M.D., Jolliet, O. and Smith, K.R. ( 2002 ) Defining iF, Environ. Sci. Technol., 36, 206 â 211.
dc.identifier.citedreferenceBennett, D.H., Fisk, W., Apte, M.G., Wu, X., Trout, A., Faulkner, D. and Sullivan, D. ( 2012 ) Ventilation, temperature, and HVAC characteristics in small and medium commercial buildings in California, Indoor Air, 22, 309 â 320.
dc.identifier.citedreferenceBongaarts, J. ( 2001 ) Household size and composition in the developing world in the 1990s, Popul. Stud., 55, 263 â 279.
dc.identifier.citedreferenceBonjour, S., Adairâ Rohani, H., Wolf, J., Bruce, N.G., Metha, S., Prussâ Ustun, A., Lahiff, M., Rehfuess, E.A., Mishra, V. and Smith, K.R. ( 2013 ) Solid fuel use for household cooking: country and regional estimates for 1980â 2010, Environ. Health Perspect., 121, 784 â 790.
dc.identifier.citedreferenceBreen, M.S., Burke, J.M., Batterman, S.A., Vette, A.F., Godwin, C., Croghan, C.W., Schultz, B.D. and Long, T.C. ( 2014 ) Modeling spatial and temporal variability of residential air exchange rates for the Nearâ Road Exposures and Effects of Urban Air Pollutants Study (NEXUS), Int. J. Environ. Res. Public Health, 11, 11481 â 11504.
dc.identifier.citedreferenceBrelih, N. and Seppänen, O. ( 2011 ) Ventilation rates and IAQ in European standards and national regulations, In: The Proceedings of the 32nd AIVC Conference and 1st TightVent Conference in Brussels, 12 â 13 October 2011. Available online: www.aivc.org.
dc.identifier.citedreferenceBurke, J.M., Zufall, M.J. and Ozkaynak, H. ( 2001 ) A population exposure model for particulate matter: case study results for PM 2.5 in Philadelphia, PA, J. Expo. Anal. Environ. Epidemiol., 11, 470 â 489.
dc.identifier.citedreferenceCanha, N., Almelda, S.M., Freitas, M.C., Taubel, M. and Hanninen, O. ( 2013 ) Winter ventilation rates at primary schools: comparison between Portugal and Finland, J. Toxicol. Environ. Health, 76, 400 â 408.
dc.identifier.citedreferenceChafe, Z., Brauer, M., Klimont, Z., Van Dingenen, R., Mehta, S., Rao, S., Riahi, K., Dentener, F. and Smith, K.R. ( 2014 ) Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease, Environ. Health Perspect., 122, 1314 â 1320.
dc.identifier.citedreferenceChan, W.R., Nazaroff, W.W., Price, P.N., Sohn, M.D. and Gadgil, A.J. ( 2005 ) Analyzing a database of residential air leakage in the U.S, Atmos. Environ., 39, 3445 â 3455.
dc.identifier.citedreferenceChan, W.R., Cohn, S., Sidheswaran, M., Sullivan, D.P. and Fisk, W.J. ( 2014 ) Contaminant levels, source strengths, and ventilation rates in California retail stores, Indoor Air, 25, 381 â 392.
dc.identifier.citedreferenceChao, C. ( 2001 ) Comparison between indoor and outdoor contaminant levels in residential buildings from passive sampler study, Build. Environ., 36, 999 â 1007.
dc.identifier.citedreferenceChen, C. and Zhao, B. ( 2011 ) Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor, Atmos. Environ., 45, 275 â 288.
dc.identifier.citedreferenceChen, C., Zhao, B. and Weschler, C.J. ( 2012 ) Assessing the influence of indoor exposure to â outdoor ozoneâ on the relationship between ozone and shortâ term mortality in U.S. communities, Environ. Health Perspect., 120, 235 â 240.
dc.identifier.citedreferenceClark, N.A., Allen, R.W., Hystad, P., Wallace, L., Dell, S.D., Foty, R., Dabekâ Zlotorzynska, E., Evans, G. and Wheeler, A.J. ( 2010 ) Exploring variation and predictors of residential fine particulate matter infiltration, Int. J. Environ. Res. Public Health, 7, 3211 â 3224.
dc.identifier.citedreferenceColey, D.A. and Beisteiner, A. ( 2002 ) Carbon dioxide levels and ventilation rates in schools, Int. J. Vent., 1, 45 â 52.
dc.identifier.citedreferenceCynthia, A.A., Edwards, R.D., Johnson, M., Zuk, M., Rojas, L., Jimenez, R.D., Riojasâ Rodriguez, H. and Masera, O. ( 2008 ) Reduction in personal exposures to particulate matter and carbon monoxide as a result of the installation of a Patsari improved cook stove in Michoacan Mexico, Indoor Air, 18, 93 â 105.
dc.identifier.citedreferenceDiapouli, E., Chaloulakou, A. and Koutrakis, P. ( 2013 ) Estimating the concentration of indoor particles of outdoor origin: a review, J. Air Waste Manag. Assoc., 63, 1113 â 1129.
dc.identifier.citedreferenceDimitroulopoulou, C. ( 2012 ) Ventilation in European dwellings: a review, Build. Environ., 47, 109 â 125.
dc.identifier.citedreferenceDimitroulopoulou, C. and Bartzis, J. ( 2013 ) Ventilation rates in European office buildings: a review, Indoor Built Environ., 23, 5 â 25.
dc.identifier.citedreferenceD’Oca, S. and Hong, T. ( 2014 ) A dataâ mining approach to discover patterns of window opening and closing behavior in offices, Build. Environ., 82, 726 â 739.
dc.identifier.citedreferenceDrescher, A.C., Lobascio, C., Gadgil, A.J. and Nazaroff, W.W. ( 1995 ) Mixing of a pointâ source indoor pollutant by forced convection, Indoor Air, 5, 204 â 214.
dc.identifier.citedreferenceDu, L., Batterman, S., Godwin, C., Chin, J.â Y., Parker, E., Breen, M., Brakefield, W., Robins, T. and Lewis, T. ( 2012 ) Air change rates and interzonal flows in residences, and the need for multiâ zone models for exposure and health analyses, Int. J. Environ. Res. Public Health, 9, 4639 â 4661.
dc.identifier.citedreferenceDutton, S.M., Mendell, M.J., Chan, W.R., Barrios, M., Sidheswaran, M.A., Sullivan, D.P., Eliseeva, E.A. and Fisk, W.J. ( 2015 ) Evalualtion of the indoor air qualtiy minimum ventilation rate procedure for use in California retail buildings, Indoor Air, 25, 93 â 104.
dc.identifier.citedreferenceEarnest, C.M. and Corsi, R.L. ( 2013 ) Inhalation exposure to cleaning products: application of a twoâ zone model, J. Occup. Environ. Hyg., 10, 328 â 335.
dc.identifier.citedreferenceEdwards, R., Karnani, S., Fisher, E.M., Johnson, M., Naeher, L., Smith, K.R. and Morawska, L. ( 2014 ) WHO IAQ Guidelines: household fuel combustion â Review 2: Emissions, http://www.who.int/indoorair/guidelines/hhfc/Review_2.pdf.
dc.identifier.citedreferenceEl Orch, Z., Stephens, B. and Waring, M.S. ( 2014 ) Predictions and determinants of sizeâ resolved particle infiltration factors in singleâ family homes in the U.S, Build. Environ., 74, 106 â 118.
dc.identifier.citedreferenceEmmerich, S.J. ( 2001 ) Validation of multizone IAQ modeling of residentialâ scale buildings: a review, ASHRAE Trans., 107, 619 â 628.
dc.identifier.citedreferenceEmmerich, S.J. and Crum, J. ( 2006 ) Simulated performance of natural and hybrid ventilation systems in an office building, HVAC & R Res., 12, 975 â 1004.
dc.identifier.citedreferenceEmmerich, S.J., Howardâ Reed, C. and Nabinger, S.J. ( 2004 ) Validation of multizone IAQ model predictions for tracer gas in a townhouse, Build. Serv. Eng. Res. Technol., 25, 305 â 316.
dc.identifier.citedreferenceEurostat, 2014. Average household size (source: European Union Statistics on Income and Living Conditions). European Commission, accessed: 7 June 2014.
dc.identifier.citedreferenceEvans, G.J., Peers, A. and Sabaliauskas, K. ( 2008 ) Particle dose estimation from frying in residential settings, Indoor Air, 18, 499 â 510.
dc.identifier.citedreferenceFabi, V., Andersen, R.V., Corgnati, S. and Olesen, B.W. ( 2012 ) Occupants’ window opening behavior: a literature review of factors influencing occupant behaviors and models, Build. Environ., 58, 188 â 198.
dc.identifier.citedreferenceFadeyi, M.O., Weschler, C.J. and Tham, K.W. ( 2009 ) The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry, Atmos. Environ., 43, 3538 â 3547.
dc.identifier.citedreferenceFantke, P., Jolliet, O., Apte, J.S., Cohen, A.J., Evans, J.S., Hänninen, O.O., Hurley, F., Jantunen, M.J., Jerrett, M., Levy, J.I., Loh, M.M., Marshall, J.D., Miller, B.G., Preiss, P., Spadaro, J.V., Tainio, M., Tuomisto, J.T., Weschler, C.J. and McKone, T.E. ( 2015 ) Health effects of fine particulate matter in life cycle impact assessment: conclusions from the Basel guidance workshop, Int. J. Life Cycle Assess., 20, 276 â 288.
dc.identifier.citedreferenceFerro, A.R., Kopperud, R.J. and Hildemann, L.M. ( 2004 ) Source strengths for indoor human activities that resuspend particulate matter, Environ. Sci. Technol., 38, 1759 â 1764.
dc.identifier.citedreferenceFeustel, H.E. ( 1998 ) COMIS â An international multizone airâ flow and contaminant transport model, Energy Build., 30, 3 â 18.
dc.identifier.citedreferenceFinlaysonâ Pitts, B.J. and Pitts, J.N. Jr ( 2000 ) Chemistry of the Upper and Lower Atmosphere, San Diego, CA, Academic Press.
dc.identifier.citedreferenceFisher, K. and Tucker, J., Contributions from Evrim Altintas, Matthew Bennett, Antony Jahandar, Jiweon Jun, and other members of the Time Use Team ( 2013 ) Technical Details of Time Use Studies. Last updated 15 July 2013. Centre for Time Use Research, University of Oxford, United Kingdom. http://www.timeuse.org/information/studies/
dc.identifier.citedreferenceGadgil, A.J., Lobscheid, C., Abadie, M.O. and Finlayson, E.U. ( 2003 ) Indoor pollutant mixing time in an isothermal closed room: an investigation using CFD, Atmos. Environ., 37, 5577 â 5586.
dc.identifier.citedreferenceGehin, E., Ramalho, O. and Kirchner, S. ( 2008 ) Size distribution and emission rate measurement of fine and ultrafine particle from indoor human activities, Atmos. Environ., 42, 8341 â 8352.
dc.identifier.citedreferenceGong, J. and Caldas, H. ( 2008 ) Data processing for realâ time construction site spatial modeling, Autom. Constr., 17, 526 â 535.
dc.identifier.citedreferenceGózeÅ ski, R., SymaÅ ksi, M., Górka, A. and Mróz, T. ( 2014 ) Airtightness of buildings in Poland, Int. J. Ventilation, 12, 391 â 400.
dc.identifier.citedreferenceGreco, S.L., Wilson, A.M., Spendgler, J.D. and Levy, J.I. ( 2007 ) Spatial patterns of mobile source particulate matter emissionsâ toâ exposure relationships across the United States, Atmos. Environ., 41m, 1011 â 1025.
dc.identifier.citedreferenceGuo, Z., Jetter, J.J. and McBrian, J.A. ( 2004 ) Rates of polycyclic aromatic hydrocarbon emissions from incense, Bull. Environ. Contam. Toxicol., 72, 186 â 193.
dc.identifier.citedreferenceGuo, H., Morawska, L., He, C. and Gilbert, D. ( 2008 ) Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an airâ conditioned classroom, Atmos. Environ., 42, 757 â 768.
dc.identifier.citedreferenceGurunathan, S., Robson, M., Freeman, N., Buckley, B., Roy, A., Meyer, R., Bukowski, J. and Lioy, P.J. ( 1998 ) Accumulation of chlorpyrifos on residential surfaces and toys accessible to children, Environ. Health Perspect., 106, 9 â 16.
dc.identifier.citedreferenceHaas, A., Weber, A., Dorer, V., Keilholz, W. and Pelletret, R. ( 2002 ) COMIS v3.1 simulation environment for multizone air flow and pollutant transport modeling, Energy Build., 34, 873 â 882.
dc.identifier.citedreferenceHabib, G., Venkataraman, C., Bond, T.C. and Schauer, J.J. ( 2008 ) Chemical, microphysical, and optical properties of primary particles from the combustion of biomass fuels, Environ. Sci. Technol., 42, 8829 â 8834.
dc.identifier.citedreferenceHanley, J.T., Ensor, D.S., Smith, D.D. and Sparks, L.E. ( 1994 ) Fractional aerosol filtration efficiency of inâ duct ventilation air cleaners, Indoor Air, 3, 169 â 178.
dc.identifier.citedreferenceHänninen, O., Hoek, G., Mallone, S., Chellini, E., Katsouyanni, K., Gariazzo, C., Cattani, G., Marconi, A., Molnar, P., Bellander, T. and Jantunen, M. ( 2011 ) Seasonal patterns of outdoor PM infiltration into indoor environments: review and metaâ analysis of available studies from different climatological zones in Europe, Air Qual. Atmos. Health, 4, 221 â 233.
dc.identifier.citedreferenceHänninen, O., Sorjamaa, R., Lipponen, P., Cyrys, J., Lanki, T. and Pekkanen, J. ( 2013 ) Aerosolâ based modeling of infiltration of ambient PM2.5 and evaluation against populationâ based measurements in homes in Helsinki, Finland, J. Aerosol Sci., 66, 111 â 122.
dc.identifier.citedreferenceHays, M.D., Smith, N.D., Kinsey, J., Dong, Y. and Kariher, P. ( 2003 ) Polycyclic aromatic hydrocarbon size distributions in aerosols from appliances of residential wood combustion as determined by direct thermal desorptionâ GC/MS, J. Aerosol Sci., 34, 1061 â 1084.
dc.identifier.citedreferenceHe, C., Morawska, L., Hitchins, J. and Gilbert, D. ( 2004 ) Contribution from indoor sources to particle number and mass concentrations in residential houses, Atmos. Environ., 38, 3405 â 3415.
dc.identifier.citedreferenceHe, C., Morawska, L. and Gilbert, D. ( 2005 ) Particle deposition rates in residential houses, Atmos. Environ., 39, 3891 â 3899.
dc.identifier.citedreferenceHe, C., Morawska, L. and Taplin, L. ( 2007 ) Particle emission characteristics of office printers, Environ. Sci. Technol., 41, 6039 â 6045.
dc.identifier.citedreferenceHellweg, S., Demou, E., Bruzzi, R., Meijer, A., Rosenbaum, R.K., Huijbregts, M.A.J. and McKone, T.E. ( 2009 ) Integrating human indoor air pollutant exposure within life cycle impact assessment, Environ. Sci. Technol., 43, 1670 â 1679.
dc.identifier.citedreferenceHering, S.V., Lunden, M.M., Thatcher, T.L., Kirchstetter, T.W. and Brown, N.J. ( 2007 ) Using regional data and building leakage to assess indoor concentrations of particles of outdoor origin, Aerosol Sci. Technol., 41, 639 â 654.
dc.identifier.citedreferenceHodas, N. and Turpin, B.J. ( 2014 ) Shifts in the gasâ particle partitioning of ambient organics with transport into the indoor environment, Aerosol Sci. Technol., 48, 271 â 281.
dc.identifier.citedreferenceHodas, N., Meng, Q., Lunden, M.M., Rich, D.Q., Ozkaynak, H., Baxter, L.K., Zhang, Q. and Turpin, B.J. ( 2012 ) Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates, J. Expo. Sci. Environ. Epidemiol., 22, 448 â 454.
dc.identifier.citedreferenceHodas, N., Meng, Q., Lunden, M.M. and Turpin, B.J. ( 2014 ) Toward refined estimates of ambient PM2.5 exposure: evaluation of a physical outdoorâ toâ indoor transport model, Atmos. Environ., 83, 229 â 236.
dc.identifier.citedreferenceHowardâ Reed, C., Wallace, L.A. and Emmerich, S.J. ( 2003 ) Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse, Atmos. Environ., 37, 5295 â 5306.
dc.identifier.citedreferenceHuang, K., Feng, G., Li, H. and Yu, S. ( 2014 ) Opening window issue of residential buildings in winter in north China: a case study in Shenyang, Energy Build., 84, 567 â 574.
dc.identifier.citedreferenceHumbert, S., Marshall, J.D., Shaked, S., Spadarp, J.V., Nishioka, Y., Preiss, P., McKone, T.E., Horvath, A. and Jolliet, O. ( 2011 ) IF for particulate matter: recommendations for life cycle impact assessment, Environ. Sci. Technol., 45, 4808 â 4816.
dc.identifier.citedreferenceHumbert, S., Fantke, P. and Jolliet, O. ( 2015 ) Particulate matter formation, In: Hauschild, M. and Huijbregts, M.A.J. (eds) Life Cycle Impact Assessment, Dordrecht, Springer Press, 97 â 113.
dc.identifier.citedreferenceHussein, T., Glystos, T., Ondracek, J., Dohanyosova, P., Zdimal, V., Hameri, K., Lazaridis, M., Smolik, J. and Kulmala, M. ( 2006 ) Particle size characterization and emission rate during indoor activities in a house, Atmos. Environ., 40, 4285 â 4307.
dc.identifier.citedreferenceIlacqua, V., Hänninen, O., Kuenzli, N. and Jantunen, M.F. ( 2007 ) IF distributions for indoor VOC sources in five European cities, Indoor Air, 17, 372 â 383.
dc.identifier.citedreferenceIwashita, G. and Akasaka, H. ( 1997 ) The effects of human behavior on natural ventilation rate and indoor air environment in summer â a field study in southern Japan, Energy Build., 25, 195 â 205.
dc.identifier.citedreferenceJang, J.â Y., Kim, S.â Y., Kim, S.â J., Lee, K.â E., Cheong, H.â K., Kim, E.â H., Choi, K.â H. and Kim, Y.â H. ( 2014a ) General factors of the Korean exposure factors handbook, J. Prev. Med. Public Health, 47, 7 â 17.
dc.identifier.citedreferenceJang, J.â Y., Jo, S.â N., Kim, S.â Y., Lee, K.â E., Choi, K.â H. and Kim, Y.H. ( 2014b ) Activity factors of the Korean exposure factors handbook, J. Prev. Med. Public Health, 47, 27 â 35.
dc.identifier.citedreferenceJetter, J.J. and Kariher, P. ( 2009 ) Solidâ fuel household cook stoves: characterization of performance and emissions, Biomass Bioenergy, 33, 294 â 305.
dc.identifier.citedreferenceJetter, J.J., Guo, Z., McBrian, J.A. and Flynn, M.R. ( 2002 ) Characterization of emissions from burning incense, Sci. Total Environ., 295, 51 â 67.
dc.identifier.citedreferenceJetter, J., Zhao, Y., Smith, K.R., Khan, B., Yelverton, T., DeCarlo, P. and Hays, M.D. ( 2012 ) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards, Environ. Sci. Technol., 46, 10827 â 10834.
dc.identifier.citedreferenceJi, W. and Zhao, B. ( 2015 ) Contribution of outdoorâ originating particles, indoorâ emitted particles and indoor secondary organic aerosols (SOA) to residential indoor PM2.5 concentration: a modelâ based estimation, Build. Environ., 90, 196 â 205.
dc.identifier.citedreferenceJohnson, T. and Long, T. ( 2005 ) Determining the frequency of open windows in residences: a pilot study in Durham, North Carolina during varying temperature conditions, J. Expo. Anal. Environ. Epidemiol., 15, 329 â 349.
dc.identifier.citedreferenceJolliet, O., Frischknecht, R., Bare, J., Boulay, A.â M., Bulle, C., Fantke, P., Gheewala, S., Hauschild, M., Itsubo, N., Margni, M., McKone, T., Mila y Canals, L., Postuma, L., Prado, V., Ridoutt, B., Sonneman, G., Rosenbaum, R., Seager, T., Struis, J., van Zelm, R., Vigon, B. and Weisbrod, A. ( 2014 ) Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase, Int. J. Life Cycle Assess., 19, 962 â 967.
dc.identifier.citedreferenceKearny, J., Wallace, L., MacNeill, M., Héroux, M.â E. and Kindzierski, W. ( 2014 ) Residential infiltration of fine and ultrafine particles in Edmonton, Atmos. Environ., 94, 793 â 805.
dc.identifier.citedreferenceKleeman, M.J., Schauer, J.J. and Cass, G.R. ( 1999 ) Size and composition distribution of fine particulate matter emitted from wood burning, meat charbroiling, and cigarettes, Environ. Sci. Technol., 33, 3516 â 3523.
dc.identifier.citedreferenceKlepeis, N.E. ( 2004 ) Using computer simulation to explore multiâ compartment effects and mitigation strategies for residential exposure to secondhand tobacco smoke, Dissertation (Ph.D.), Environmental Health Sciences. Berkeley, University of California.
dc.identifier.citedreferenceKlepeis, N.E. and Nazaroff, W.W. ( 2006 ) Modeling residential exposure to secondhand tobacco smoke, Atmos. Environ., 40, 4393 â 4407.
dc.identifier.citedreferenceKlepeis, N.E., Nelson, W.C., Ott, W.R., Robinson, J.P., Tsang, A.M., Switzer, P., Behar, J.V., Stephen, C.H. and Engelman, W.H. ( 2001 ) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants, J. Expo. Anal. Environ. Epidemiol., 11, 231 â 252.
dc.identifier.citedreferenceLai, A.C.K. ( 2002 ) Particle deposition indoors: a review, Indoor Air, 12, 211 â 214.
dc.identifier.citedreferenceLai, A.C.K., Thatcher, T.L. and Nazaroff, W.W. ( 2000 ) Inhalation transfer factors for air pollution health risk assessment, J. Air Waste Manag. Assoc., 50, 1688 â 1699.
dc.identifier.citedreferenceLee, S.â C. and Wang, B. ( 2004 ) Characteristics of emissions of air pollutants from burning of incense in a large environmental chamber, Atmos. Environ., 38, 941 â 951.
dc.identifier.citedreferenceLevie, D., de Kluizenaar, Y., Hoesâ van Offelen, E.C.M., Hofstetter, H., Janssen, S.A., Spiekman, M.E. and Koene, F.G.H. ( 2014 ) Determinants of ventilation behavior in naturally ventilated dwellings: identification and quantification of relationships, Build. Environ., 82, 388 â 399.
dc.identifier.citedreferenceLevy, J.I., Wilson, A.M., Evans, J.S. and Spengler, J.D. ( 2003 ) Estimation of primary and secondary particulate matter intake fractions for power plants in Georgia, Environ. Sci. Technol., 37, 5528 â 5536.
dc.identifier.citedreferenceLi, W. and Hopke, P.K. ( 1993 ) Initial size distributions and hygroscopicity of indoor combustion aerosol particles, Aerosol Sci. Technol., 19, 305 â 316.
dc.identifier.citedreferenceLi, Y. and Li, X. ( 2015 ) Natural ventilation potential of highâ rise residential buildings in northern China using coupling thermal and airflow simulations, Build. Simul., 8, 51 â 64.
dc.identifier.citedreferenceLi, Y., Lueng, G.M., Tang, J.W., Yang, X., Chao, C.Y.H., Lin, J.Z., Lu, J.W., Nielsen, P.V., Niu, J., Qian, H., Sleigh, A.C., Su, H.J.J., Sundell, J., Wong, T.W. and Yeun, P.L. ( 2007 ) Role of ventilation in airborne transmission of infectious agents in the built environment â a multidisciplinary systematic review, Indoor Air, 17, 2 â 18.
dc.identifier.citedreferenceLi, N., Li, J., Fan, R. and Jia, H. ( 2015 ) Probability of occupant operation of windows during transition seasons in office buildings, Renewable Energy, 73, 84 â 91.
dc.identifier.citedreferenceLiang, C. and Pankow, J.F. ( 1996 ) Gas/particle partitioning of organic compounds to environmental tobacco smoke: partitioning coefficient measurements by desorption and comparison to urban particulate material, Environ. Sci. Technol., 30, 2800 â 2805.
dc.identifier.citedreferenceLioy, P. ( 2006 ) Employing dynamical and chemical processes for contaminant mixtures outdoors to the indoor environment: the implications for total human exposure analysis and prevention, J. Expo. Sci. Environ. Epidemiol., 16, 207 â 224.
dc.identifier.citedreferenceLitiu, A. ( 2012 ) Ventilation system types in some EU countries, REHVA J., 18 â 23.
dc.identifier.citedreferenceLiu, W., Zhang, J., Hashim, J.H., Jalaludin, J., Hashim, Z. and Goldstein, B.D. ( 2003 ) Mosquito coil emissions and health implications, Environ. Health Perspect., 111, 1454 â 1460.
dc.identifier.citedreferenceLiu, C., Zhang, Y. and Weschler, C.J. ( 2014 ) The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments, Sci. Total Environ., 497, 401 â 411.
dc.identifier.citedreferenceLong, C.M., Suh, H.H. and Koutrakis, P. ( 2000 ) Characterization of indoor particle sources using continuous mass and size monitors, J. Air Waste Manag. Assoc., 50, 1236 â 1250.
dc.identifier.citedreferenceLong, C.M., Suh, H.H., Catalano, P.J. and Koutrakis, P. ( 2001 ) Using timeâ and sizeâ resolved particulate data to quantify indoor penetration and deposition behavior, Environ. Sci. Technol., 35, 2089 â 2099.
dc.identifier.citedreferenceL’Orange, C., Leith, D., Volckens, J. and DeFoort, M. ( 2015 ) A quantitative model of cookstove variability and field performance: implications for sample size, Biomass Bioenergy, 72, 233 â 241.
dc.identifier.citedreferenceLunden, M.M., Revzan, K.L., Fischer, M.L., Thatcher, T.L., Littlejohn, D., Hering, S.V. and Brown, N.J. ( 2003 ) The transformation of outdoor ammonium nitrate aerosols in the indoor environment, Atmos. Environ., 37, 5633 â 5644.
dc.identifier.citedreferenceLung, S.â C.C. and Hu, S.â C. ( 2003 ) Generation rates and emission factors of particulate matter and particleâ bound polycyclic aromatic hydrocarbons of incense sticks, Chemosphere, 50, 673 â 679.
dc.identifier.citedreferenceMacNeill, M., Wallace, L., Kearney, J., Allen, R.W., Van Ryswyk, K., Judek, S., Xu, X. and Wheeler, A. ( 2012 ) Factors influencing variability in the infiltration of PM2.5 mass and its components, Atmos. Environ., 61, 518 â 532.
dc.identifier.citedreferenceMacNeill, M., Kearney, J., Wallace, L., Gibson, M., Heroux, M.E., Kuchta, J., Guernsey, J.R. and Wheeler, A.J. ( 2014 ) Quantifying the contribution of ambient and indoorâ generated fine particles to Indoor Air in residential environments, Indoor Air, 24, 362 â 375.
dc.identifier.citedreferenceMarr, D., Mason, M., Mosley, R. and Liu, X. ( 2012 ) The influence of opening windows and doors on the natural ventilation rate of a residential building, HVAC & R. Res., 18, 195 â 203.
dc.identifier.citedreferenceMatz, C., Stieb, D., Davis, K., Egyed, M., Rose, A., Chou, B. and Brion, O. ( 2014 ) Effects of age, season, gender and urbanâ rural status on timeâ activity: canadian human activity pattern survey 2 (CHAPS 2), Int. J. Environ. Res. Public Health, 11, 2108 â 2124.
dc.identifier.citedreferenceMcGrath, J.A., Byrne, M.A., Ashmore, M.R., Terry, A.C. and Dimitroulopoulou, C. ( 2014 ) A simulation study of the changes in PM2.5 concentrations due to interzonal airflow variations caused by internal door opening patterns, Atmos. Environ., 87, 183 â 188.
dc.identifier.citedreferenceMcNeil, S., Quaglia, L., Bassett, M., Overton, G. and Plagmann, M. ( 2012 ) A survey of airtightness and ventilation rates in post 1994 NZ homes, In AIVC 33rd conference: optimising ventilative cooling and airtightness for [nearly] zeroâ energy buildings, IAQ and comfort.
dc.identifier.citedreferenceMeng, Q.Y., Turpin, B.J., Polidori, A., Lee, J.H., Weisel, C.P., Morandi, M., Winer, A. and Zhang, J. ( 2005 ) PM 2.5 of ambient origin: estimates and exposure errors relevant to PM epidemiology, Environ. Sci. Technol., 39, 5105 â 5112.
dc.identifier.citedreferenceMeng, Q.Y., Turpin, B.J., Lee, J.H., Polidori, A., Weisel, C.P., Morandi, M., Colome, S., Zhang, J., Stock, T. and Winer, A. ( 2007 ) How does infiltration behavior modify the composition of ambient PM2.5 in indoor spaces? An analysis of RIOPA data, Environ. Sci. Technol., 41, 7315 â 7321.
dc.identifier.citedreferenceMi, Y.â H., Norback, D., Tao, J., Mi, Y.â L. and Ferm, M. ( 2006 ) Current asthma and respiratory symptoms among pupils in Shanghai, China: influence of building ventilation, nitrogen dioxide, ozone, and formaldehyde in classrooms, Indoor Air, 16, 454 â 464.
dc.identifier.citedreferenceNaumova, Y.Y., Offenberg, J.H., Eisenreich, S.J., Meng, Q.Y., Polidori, A., Turpin, B.J., Weisel, C.P., Morandi, M.T., Colome, S.D., Stock, T.H., Winer, A.M., Alimokhtari, S., Kwon, J., Maberti, S., Shendell, D., Jones, J. and Farrar, C. ( 2003 ) Gas/particle distribution of polycyclic aromatic hydrocarbons in coupled indoor/outdoor atmospheres, Atmos. Environ., 37, 703 â 719.
dc.identifier.citedreferenceNazaroff, W.W. ( 2004 ) Indoor particle dynamics, Indoor Air, 14, 175 â 183.
dc.identifier.citedreferenceNazaroff, W.W. ( 2008 ) Inhalation intake fraction of pollutants from episodic indoor emissions, Build. Environ., 43, 269 â 277.
dc.identifier.citedreferenceNazaroff, W.W. and Weschler, C.J. ( 2004 ) Cleaning products and air fresheners: exposure to primary and secondary air pollutants, Atmos. Environ., 38, 2841 â 2865.
dc.identifier.citedreferenceOgulei, D., Hopke, P.K. and Wallace, L.A. ( 2006 ) Analysis of indoor particle size distributions in an occupied townhouse using positive matrix factorization, Indoor Air, 16, 204 â 215.
dc.identifier.citedreferenceOlson, D.A. and Burke, J.M. ( 2006 ) Distributions of PM 2.5 source strengths for cooking from the Research Triangle Park particulate matter panel study, Environ. Sci. Technol., 40, 163 â 169.
dc.identifier.citedreferenceOrru, H., Mikola, A., Upan, M. and Koiv, T.â A. ( 2014 ) Variation of indoor/outdoor particulates in Tallinn, Estonia â The role of ventilation, heating systems and lifestyle, J. Environ. Pollut. Hum. Health, 2, 52 â 57.
dc.identifier.citedreferenceOtt, W., Wallace, L. and Mage, D. ( 2000 ) Predicting particulate (PM10) personal exposure distributions using a random component superposition statistical model, J. Air Waste Manag. Assoc., 50, 1390 â 1406.
dc.identifier.citedreferenceOzkaynak, H., Xue, J., Weker, R., Butler, D., Koutrakis, P. and Spengler, J. ( 1997 ) The Particle Team (PTEAM) study: Analysis of the Data, (Project Summary), Washington, DC, U.S. Environmental Protection Agency.
dc.identifier.citedreferencePankow, J.F. ( 1994 ) An absoprtion model of gas/particle partitioning of organic compounds in the atmosphere, Atmos. Environ., 28, 185 â 188.
dc.identifier.citedreferencePark, J.S., Jee, N.â Y. and Jeong, J.â W. ( 2014 ) Effects of types of ventilation system on indoor particle concentrations in residential buildings, Indoor Air, 24, 629 â 638.
dc.identifier.citedreferencePersily, A.K. ( 2015 ) Field measurement of ventilation rates, Indoor Air, doi: 10.1111/ina.12193.
dc.identifier.citedreferencePersily, A. and Gorfain, J. ( 2004 ) Analysis of Ventilation Data from the U.S. Environmental Protection Agency Building Assessment Survey and Evaluation (BASE) Study, Report NISTIR 7145, Washington, National Institute of Standards and Technology.
dc.identifier.citedreferencePersily, A., Musser, A. and Emmerich, S.J. ( 2010 ) Modeled infiltration rate distributions for U.S. housing, Indoor Air, 20, 473 â 485.
dc.identifier.citedreferencePhillips, L.J. and Moya, J. ( 2014 ) Exposure factors resources: contrasting EPA’s Exposure Factors Handbook with international sources, J. Expo. Sci. Environ. Epidemiol., 24, 233 â 243.
dc.identifier.citedreferencePolidori, A., Turpin, B., Meng, Q.Y., Lee, J.H., Weisel, C., Morandi, M., Colome, S., Stock, T., Winer, A., Zhang, J., Kwon, J., Alimokhtari, S., Shendell, D., Jones, J., Farrar, C. and Maberti, S. ( 2006 ) Fine organic particulate matter dominates indoorâ generated PM2.5 in RIOPA homes, J. Expo. Sci. Environ. Epidemiol., 16, 321 â 331.
dc.identifier.citedreferenceRamos, T. and Stephens, B. ( 2014 ) Tools to improve built environment data collection for microbial ecology investigations, Build. Environ., 81, 243 â 257.
dc.identifier.citedreferenceRehfuess, E., Mehta, S. and Prussâ Ustun, A. ( 2006 ) Assessing household solid fuel use: multiple implications for the millennium development goals, Environ. Health Perspect., 114, 373 â 378.
dc.identifier.citedreferenceRichardson and Stantec Consulting Ltd ( 2013 ) 2013 Canadian Exposure Factors Handbook, Saskatoon, SK, Canada, Toxicology Centre, University of Saskatchewan, www.usask.ca/toxicology.
dc.identifier.citedreferenceRiley, W.J., McKone, T.E., Lai, A.C.K. and Nazaroff, W.W. ( 2002 ) Indoor particulate matter of outdoor origin: importance of sizeâ dependent removal mechanisms, Environ. Sci. Technol., 36, 200 â 207.
dc.identifier.citedreferenceRoetzel, A., Tsangrassoulis, A., Dietrich, U. and Busching, S. ( 2010 ) A review of occupant control on natural ventilation, Renew. Sustain. Energy Rev., 14, 1001 â 1013.
dc.identifier.citedreferenceSantamouris, M., Synnefa, A., Asssimakopoulos, M., Livada, I., Pavlou, K., Papaglastra, M., Gaitani, N., Kolokotsa, D. and Assimakopoulos, V. ( 2008 ) Experimental investigation of the air flow and indoor carbon dioxide concentration in classrooms with intermittent natural ventilation, Energy Build., 40, 1833 â 1843.
dc.identifier.citedreferenceSarnat, S.E., Coull, B.A., Ruiz, P.A., Koutrakis, P. and Suh, H.H. ( 2006 ) The influences of ambient particle composition and size on particle infiltration in Los Angeles, CA, Residences, J. Air Waste Manag. Assoc., 56, 186 â 196.
dc.identifier.citedreferenceSchneider, A. and Woodcock, C.E. ( 2008 ) Compact, dispersed, fragmented, extensive? A comparison of urban growth in twentyâ five global cities using remotely sensed data, pattern metrics and census information, Urban Stud., 45, 659 â 692.
dc.identifier.citedreferenceSchweizer, C., Edwards, R.D., Bayerâ Oglesby, L., Gauderman, W.J., Ilacqua, V., Jantunen, M.J., Lai, H.K., Nieuwenhuijsen, M. and Kunzli, N. ( 2007 ) Indoor timeâ microenvironmentâ activity patterns in seven regions of Europe, J. Expo. Sci. Environ. Epidemiol., 17, 170 â 181.
dc.identifier.citedreferenceSee, S.W. and Balasubramanian, R. ( 2011 ) Characterization of fine particle emissions from incense burning, Build. Environ., 46, 1074 â 1080.
dc.identifier.citedreferenceSeppänen, O.A., Fisk, W.J. and Mendell, M.J. ( 1999 ) Association of ventilation rates and CO2â concentrations with health and other responses in commercial and institutional buildings, Indoor Air, 9, 226 â 252.
dc.identifier.citedreferenceSeto, K.C. and Fragkias, M. ( 2005 ) Quantifying spatiotemporal patterns of urban landâ use change in four cities of China with time series landscape metrics, Landscape Ecol., 20, 871 â 888.
dc.identifier.citedreferenceShen, G., Wang, W., Yang, Y., Ding, J., Xue, M., Min, Y., Zhu, C., Shen, H.M., Li, W., Wang, B., Wang, R., Wang, X., Tao, S. and Russell, A.G. ( 2011 ) Emissions of PAHs from indoor crop residue burning in a typical rural stove: emission factors, size distributions, and gasâ particle partitioning, Environ. Sci. Technol., 45, 1206 â 1212.
dc.identifier.citedreferenceShi, S. and Zhao, B. ( 2012 ) Comparison of the predicted concentration of outdoor originated indoor polycyclic aromatic hydrocarbons between a kinetic partition model and a linear instantaneous model for gasâ particle partition, Atmos. Environ., 59, 93 â 101.
dc.identifier.citedreferenceShi, S., Chen, C. and Zhao, B. ( 2015 ) Air infiltration rate distributions of residences in Beijing, Build. Environ., 92, 528 â 537.
dc.identifier.citedreferenceSinger, B.C., Coleman, B.K., Destaillats, H., Hodgson, A.T., Lunden, M.M., Weschler, C.J. and Nazaroff, W.W. ( 2006 ) Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone, Atmos. Environ., 40, 6696 â 6710.
dc.identifier.citedreferenceSippola, M.R. and Nazaroff, W.W. ( 2002 ) Particle Deposition from Turbulent Flow: Review of Published Research and Its Applicability to Ventilation Ducts in Commercial Buildings, LBNLâ 51432, Berkeley, Lawrence Berkeley National Laboratory.
dc.identifier.citedreferenceStatistics Canada ( 2011 ) General social survey â 2010 Overview of the time use of Canadians, http://www.statcan.gc.ca/pub/89-647-x/89-647-x2011001-eng.htm
dc.identifier.citedreferenceStephens, B. ( 2015 ) Building design and operational choices that impact indoor exposures to outdoor particulate matter inside residences, Sci. Technol. Built Environ., 21, 3 â 13.
dc.identifier.citedreferenceStephens, B. and Siegel, J.A. ( 2012 ) Comparison of test methods for determining the particle removal efficiency of filters in residential and lightâ commercial central HVAC systems, Aerosol Sci. Technol., 46, 504 â 513.
dc.identifier.citedreferenceStephens, B. and Siegel, J.A. ( 2013 ) Ultrafine particle removal by residential heating, ventilating, and airâ conditioning filters, Indoor Air, 23, 488 â 497.
dc.identifier.citedreferenceStephens, B., Siegel, J.A. and Novoselac, A. ( 2011 ) Operational characteristics of residential and lightâ commercial airâ conditioning systems in a hot and humid climate zone, Build. Environ., 46, 1972 â 1983.
dc.identifier.citedreferenceStephens, B., Azimi, P., El Orch, Z. and Ramos, T. ( 2013 ) Ultrafine particle emissions from desktop 3D printers, Atmos. Environ., 79, 334 â 339.
dc.identifier.citedreferenceStewart, J. and Ren, Z. ( 2003 ) Prediction of indoor gaseous pollutant dispersion by nesting subâ zones within a multizone model, Build. Environ., 38, 635 â 643.
dc.identifier.citedreferenceStewart, J. and Ren, Z. ( 2006 ) COwZâ A subzonal indoor airflow, temperature and contaminant dispersion model, Build. Environ., 41, 1631 â 1648.
dc.identifier.citedreferenceSundell, J., Lindvall, T. and Stenberg, B. ( 1994 ) Associations between type of ventilation and air flow rates in office buildings and the risk of SBSâ symptoms among occupants, Environ. Int., 2, 239 â 251.
dc.identifier.citedreferenceSundell, J., Levin, H., Nazaroff, W.W., Cain, W.S., Fisk, W.J., Grimsrud, D.T., Gyntelberg, F., Li, Y., Persily, A.K., Pickering, A.C., Samet, J.A., Spengler, J.D., Taylor, S.T. and Weschler, C.J. ( 2011 ) Ventilation rates and health: multidisciplinary review of the scientific literature, Indoor Air, 21, 191 â 204.
dc.identifier.citedreferenceThatcher, T.L. and Layton, D.W. ( 1995 ) Deposition, resuspension, and penetration of particles within a residence, Atmos. Environ., 29, 1487 â 1497.
dc.identifier.citedreferenceThatcher, T.L., Lai, A.C.K., Morenoâ Jackson, R., Sextro, R.G. and Nazaroff, W.W. ( 2002 ) Effects of room furnishings and air speeds on particle deposition rates indoors, Atmos. Environ., 36, 1811 â 1819.
dc.identifier.citedreferenceThatcher, T.L., Lunden, M.M., Revzan, K.L., Sextro, R.G. and Brown, N.J. ( 2003 ) A concentration rebound method for measuring particle penetration and deposition in the indoor environment, Aerosol Sci. Technol., 37, 847 â 864.
dc.identifier.citedreferenceThornburg, J.W., Rodes, C.E., Lawless, P.A., Stevens, C.D. and Williams, R.D. ( 2004 ) A pilot study of the infleucen of residential HAC duty cycle on indoor air quality, Atmos. Environ., 38, 1567 â 1577.
dc.identifier.citedreferenceTorkmahalleh, M.A., Goldasteh, I., Zhao, Y., Udochu, N.M., Rossner, A., Hopke, P.K. and Ferro, A.R. ( 2012 ) PM 2.5 and ultrafine particles emitted during heating of commercial cooking oils, Indoor Air, 22, 483 â 491.
dc.identifier.citedreferenceTurpin, B.J., Weisel, C.P., Morandi, M., Colome, S., Eisenreich, S. and Buckley, B. ( 2007 ) Relationships of indoor, outdoor and personal air (RIOPA): part II. Analysis of concentrations of particulate matter species, Research Report (Health Effects Institute), 130, 79 â 92.
dc.identifier.citedreferenceUnited Nations ( 2008 ) Principles and recommendations for population and housing censuses, Revision 2, http://unstats.un.org/unsd/demographic/sources/census/census3.htm, accessed: 7 June 2014.
dc.identifier.citedreferenceUnited Nations ( 2013 ) Tabulations on households characteristics â data from 2000 and 2010 rounds of censuses, Demographic Yearbook, http://unstats.un.org/unsd/demographic/products/dyb/dyb_Household/dyb_household.htm, accessed: 7 June 2014.
dc.identifier.citedreferenceU.S. Census Bureau (USCB) ( 2010 ) Profile of General Population and Housing Characteristics: 2010 Demographic Profile Data. U.S. Census Bureau, accessed: 7 June 2014.
dc.identifier.citedreferenceU.S. Environmental Protection Agency (US EPA) ( 2011 ) Exposure Factors Handbook, 2011 edn, Washington, DC, National Center for Environmental Assessment; EPA/600/Râ 09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh.
dc.identifier.citedreferenceVespa, J., Lewis, J.M. and Kreider, R.M. ( 2013 ) America’s Families and Living Arrangements: 2012 Population Characteristics, Washington, DC, U.S. Census Bureau.
dc.identifier.citedreferenceWainman, T., Zhang, J., Weschler, C.J. and Lioy, P.J. ( 2000 ) Ozone and limonene in Indoor Air: a source of submicron particle exposure, Environ. Health Perspect., 108, 1139 â 1145.
dc.identifier.citedreferenceWallace, L. ( 2006 ) Indoor sources of ultrafine and accumulation mode particles: size distributions, sizeâ resolved concentrations, and source strengths, Aerosol Sci. Technol., 40, 348 â 360.
dc.identifier.citedreferenceWallace, L.A., Emmerich, S.J. and Howardâ Reed, C. ( 2002 ) Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows, J. Expo. Anal. Environ. Epidemiol., 12, 296 â 306.
dc.identifier.citedreferenceWallace, L.A., Emmerich, S.J. and Howardâ Reed, C. ( 2004 ) Source strengths of ultrafine particles due to cooking with a gas stove, Environ. Sci. Technol., 38, 2304 â 2311.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.