Show simple item record

Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy

dc.contributor.authorGoodsitt, Mitchell M.
dc.contributor.authorShenoy, Apeksha
dc.contributor.authorShen, Jincheng
dc.contributor.authorHoward, David
dc.contributor.authorSchipper, Matthew J.
dc.contributor.authorWilderman, Scott
dc.contributor.authorChristodoulou, Emmanuel
dc.contributor.authorChun, Se Young
dc.contributor.authorDewaraja, Yuni K.
dc.date.accessioned2017-01-06T20:51:02Z
dc.date.available2017-01-06T20:51:02Z
dc.date.issued2014-05
dc.identifier.citationGoodsitt, Mitchell M.; Shenoy, Apeksha; Shen, Jincheng; Howard, David; Schipper, Matthew J.; Wilderman, Scott; Christodoulou, Emmanuel; Chun, Se Young; Dewaraja, Yuni K. (2014). "Evaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy." Medical Physics 41(5): n/a-n/a.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/135113
dc.publisherAmerican Association of Physicists in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomputerised tomography
dc.subject.otherMaterials properties
dc.subject.otherX‐ray scattering
dc.subject.otherdosimetry
dc.subject.otherMedical X‐ray imaging
dc.subject.othercellular biophysics
dc.subject.othercalibration
dc.subject.otherbone
dc.subject.otherTherapeutic applications, including brachytherapy
dc.subject.otherDosimetry/exposure assessment
dc.subject.otherSegmentation
dc.subject.otherSingle‐slice
dc.subject.otherGermanium
dc.subject.otherImage scanners
dc.subject.otherX‐ray effects
dc.subject.otherMedical imaging
dc.subject.otherDosimetry
dc.subject.otherComputed tomography
dc.subject.otherCalibration
dc.subject.otherScintigraphy
dc.subject.otherBiological material, e.g. blood, urine; Haemocytometers
dc.subject.otherAnimal or vegetable oils, fats, fatty substances or waxes; Fatty acids therefrom; Detergents; Candles
dc.subject.otherCompositions of oils, fats or waxes; Compositions of derivatives thereof
dc.subject.otherRadiation therapy
dc.subject.otherComputerised tomographs
dc.subject.othersubregion analysis
dc.subject.otherphantom study
dc.subject.otherbone marrow
dc.subject.otherquantitative computed tomography
dc.subject.otherradioisotopes
dc.subject.otherradiation therapy
dc.subject.otherphantoms
dc.subject.othermedical image processing
dc.subject.otherimage segmentation
dc.subject.otherfats
dc.titleEvaluation of dual energy quantitative CT for determining the spatial distributions of red marrow and bone for dosimetry in internal emitter radiation therapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Nuclear Engineering, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Radiation Oncology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109
dc.contributor.affiliationumDepartment of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109
dc.contributor.affiliationotherUlsan National Institute of Science and Technology (UNIST), School of Electrical and Computer Engineering, Ulsan 689‐798, Republic of Korea
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135113/1/mp0378.pdf
dc.identifier.doi10.1118/1.4870378
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceM. M. Goodsitt, R. H. Johnson, and C. H. Chesnut, “ A new set of calibration standards for estimating the fat and mineral content of vertebrae via dual energy QCT,” Bone Miner. 13, 217 – 233 ( 1991 ). 10.1016/0169‐6009(91)90070‐G
dc.identifier.citedreferenceM. M. Goodsitt, D. I. Rosenthal, W. R. Reinus, and J. Coumas, “ Two postprocessing CT techniques for determining the composition of trabecular bone,” Invest. Radial. 22, 209 – 215 ( 1987 ). 10.1097/00004424‐198703000‐00005
dc.identifier.citedreferenceY. K. Dewaraja et al., “ 131 I‐tositumomab radioimmunotherapy: Initial tumor dose‐response results using 3‐dimensional dosimetry including radiobiologic modeling,” J. Nucl. Med. 51, 1155 – 1162 ( 2010 ). 10.2967/jnumed.110.075176
dc.identifier.citedreferenceJ. C. Pichardo, R. J. Milner, and W. E. Bolch, “ MRI measurement of bone marrow cellularity for radiation dosimetry,” J. Nucl. Med. 52, 1482 – 1489 ( 2011 ). 10.2967/jnumed.111.087957
dc.identifier.citedreferenceH. Ishizaka, H. Horikoshi, T. lnoue, T. Fukusato, and M. Matsumoto, “ Bone marrow cellularity: Quantification by chemical‐shift misregistration in magnetic resonance imaging and comparison with histomorphometrical techniques,” Australas Radiol. 39, 411 – 414 ( 1995 ). 10.1111/j.1440‐1673.1995.tb00325.x
dc.identifier.citedreferenceD. Ballon, A. A. Jakubowski, M. C. Graham, E. Schneider, and J. A. Koutcher, “ Spatial mapping of the percentage cellularity in human bone marrow using magnetic resonance imaging,” Med. Phys. 23 ( 2 ), 243 – 250 ( 1996 ). 10.1118/1.597796
dc.identifier.citedreferenceD. Ballon, A. Jakubowski, J. Gabrilovem, C. Graham, M. Zakowski, C. Sheridan, and J. A. Koutcher, “ In vivo measurements of bone marrow cellularity using volume‐localized proton NMR spectroscopy,” Mag. Res. Med. 19, 85 – 95 ( 1991 ). 10.1002/mrm.1910190108
dc.identifier.citedreferenceK.‐Y. Ho, H. H. Hu, J. C. Keyak, P. M. Colletti, and C. M. Powers, “ Measuring bone mineral density with fat–water MRI: Comparison with computed tomography,” J. Mag. Res. Imaging 37 ( 1 ), 237 – 242 ( 2013 ). 10.1002/jmri.23749
dc.identifier.citedreferenceS. J. Wilderman, J. P. L. Roberson, W. E. Bolch, and Y. K. Dewaraja, “ Investigation of effect of variations in bone fraction and red marrow cellularity on bone marrow dosimetry in radio‐immunotherapy,” Phys. Med. Biol. 58 ( 14 ), 4717 – 4731 ( 2013 ). 10.1088/0031‐9155/58/14/4717
dc.identifier.citedreferenceA. P. Shah, W. E. Bolch, D. A. Rajon, P. W. Patton, and D. W. Jokisch, “ A paired‐image radiation transport model for skeletal dosimetry,” J. Nucl. Med. 46, 344 – 353 ( 2005 ).
dc.identifier.citedreferenceY. K. Dewaraja, A. M. Avram, P. L. Roberson, L. B. Smith, S. J. Wilderman, J. Shen, H. Savas, E. Youssef, M. S. Kaminski, and M. J. Schipper, “ Tumor absorbed dose predicts progression free survival (PFS) following I‐131 radioimmunotherapy (RIT),” J. Nucl. Med. 54, 16P ( 2013 ).
dc.identifier.citedreferenceG. S. Fung, S. Kawamoto, B. R. Matlaga, K. Taguchi, X. Zhou, E. K. Fishman, and B. M. Tsui, “ Differentiation of kidney stones using dual‐energy CT with and without a tin filter,” Am. J. Roentgenol. 198 ( 6 ), 1380 – 1386 ( 2012 ). 10.2214/AJR.11.7217
dc.identifier.citedreferenceA. N. Primak, J. C. Ramirez Giraldo, X. Liu, L. Yu, and C. H. McCollough, “ Improved dual‐energy material discrimination for dual‐source CT by means of additional spectral filtration,” Med. Phys. 36 ( 4 ), 1359 – 1369 ( 2009 ). 10.1118/1.3083567
dc.identifier.citedreferenceJ. Nuyts, B. De Man, and J. A. Fessler, “ Modeling the physics in the iterative reconstruction for transmission computed tomography,” Phys. Med. Biol. 58 ( 12 ), R63 – R96 ( 2013 ). 10.1088/0031‐9155/58/12/R63
dc.identifier.citedreferenceM. M. Goodsitt, P. Hoover, M. S. Veldee, and S. L. Hsueh, “ The composition of bone marrow for a dual‐energy quantitative tomography technique: A cadaver and computer simulation study,” Invest. Radiol. 29, 695 – 704 ( 1994 ). 10.1097/00004424‐199407000‐00006
dc.identifier.citedreferenceW. D. Reinbold, C. P. Adler, W. A. Kalender, and R. Lente, “ Accuracy of vertebral mineral determination by dual‐energy quantitative computed tomography,” Skeletal Radiol. 20 ( 1 ), 25 – 9 ( 1991 ). 10.1007/BF00243717
dc.identifier.citedreferenceH. Kugel, C. Jung, O. Schulte, and W. Heindel “ Age‐ and sex‐specific differences in the 1H‐spectrum of vertebral bone marrow,” J. Magn. Reson. Imaging 13 ( 2 ), 263 – 268 ( 2001 ). 10.1002/1522‐2586(200102)13:2<263::AID‐JMRI1038>3.0.CO;2‐M
dc.identifier.citedreferenceG. P. Liney, C. P. Bernard, D. J. Manton, L. S. Turnbull, and C. M. Langton, “ Age, gender, and skeletal variation in bone marrow composition: A preliminary study at 3.0 Tesla,” J. Magn. Reson. Imaging 26 ( 3 ), 787 – 793 ( 2007 ). 10.1002/jmri.21072
dc.identifier.citedreferenceD. Schellinger, C. S. Lin, J. Lim, H. G. Hatipoglu, J. C. Pezzullo, and A. J. Singer, “ Bone marrow fat and bone mineral density on proton MR spectroscopy and dual‐energy X‐ray absorptiometry: Their ratio as a new indicator of bone weakening,” Am. J. Roentgenol. 183 ( 6 ), 1761 – 1765 ( 2004 ). 10.2214/ajr.183.6.01831761
dc.identifier.citedreferenceW. E. Bolch, P. W. Paton, D. A. Rajon, A. P. Shah, D. W. Jokish, and B. A. Inglis, “ Considerations of marrow cellularity in 3‐dimensional dosimetric models of the trabecular skeleton,” J. Nucl. Med. 43, 97 – 108 ( 2002 ).
dc.identifier.citedreferenceM. Hollander and D. A. Wolfe, Nonparametric Statistical Methods ( Wiley, New York, 1973 ).
dc.identifier.citedreferenceD. F. Bauer, “ Constructing confidence sets using rank statistics,” J. Am. Stat. Assoc. 67, 687 – 690 ( 1972 ). 10.1080/01621459.1972.10481279
dc.identifier.citedreferenceH. B. Mann and D. R. Whitney, “ On a test of whether one of two random variables is stochastically larger than the other,” Ann. Math. Stat. 18 ( 1 ), 50 – 60 ( 1947 ). 10.1214/aoms/1177730491
dc.identifier.citedreferenceF. Wilcoxon, “ Individual comparisons by ranking methods,” Biom. Bull. 1 ( 6 ), 80 – 83 ( 1945 ). 10.2307/3001968
dc.identifier.citedreferenceP. Steiger, J. Block, J. S. Steiger, A. F. Heuck, A. Friedlander, B. Ettinger, S. T. Haris, C. C. Gluer, and H. K. Genant, “ Spinal bone‐mineral density measured with quantitative CT—Effect of region of interest, vertebral level, and technique,” Radiology 175, 537 – 543 ( 1990 ).
dc.identifier.citedreferenceH. Q. Woodard and D. R. White, “ The composition of body tissues,” Br. J. Radiol. 59, 1209 – 1219 ( 1986 ). 10.1259/0007‐1285‐59‐708‐1209
dc.identifier.citedreferenceInternational Commission on Radiological Protection, “ Report of the Task Group on Reference Man,” ICRP Publication 23 ( Pergamon, Oxford, England, 1975 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.