Show simple item record

Tutorial: Parallel Computing of Simulation Models for Risk Analysis

dc.contributor.authorReilly, Allison C.
dc.contributor.authorStaid, Andrea
dc.contributor.authorGao, Michael
dc.contributor.authorGuikema, Seth D.
dc.date.accessioned2017-01-06T20:51:07Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationReilly, Allison C.; Staid, Andrea; Gao, Michael; Guikema, Seth D. (2016). "Tutorial: Parallel Computing of Simulation Models for Risk Analysis." Risk Analysis 36(10): 1844-1854.
dc.identifier.issn0272-4332
dc.identifier.issn1539-6924
dc.identifier.urihttps://hdl.handle.net/2027.42/135118
dc.publisherWiley Periodicals, Inc.
dc.publisherMcGraw‐Hill
dc.subject.otherrisk analysis
dc.subject.otherParallel computing
dc.titleTutorial: Parallel Computing of Simulation Models for Risk Analysis
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbtoplevelBusiness and Economics
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135118/1/risa12565_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135118/2/risa12565.pdf
dc.identifier.doi10.1111/risa.12565
dc.identifier.sourceRisk Analysis
dc.identifier.citedreferenceMATLAB version 8.2.0.701. Natick, MA: The MathWorks Inc., 2014.
dc.identifier.citedreferenceGuikema SD, Gardoni P. Reliability estimation for networks of reinforced concrete bridges. Journal of Infrastructure Systems, 2009; 15 ( 2 ): 61 – 69.
dc.identifier.citedreferenceParallel Python. Home, 2014. Available at: http://www.parallelpython.com.
dc.identifier.citedreferenceRevolution Analytics. doSNOW: Foreach parallel adaptor for the snow package. R package version 1.0.6., 2012. Available at: http://CRAN.R‐project.org/package=doSNOW.
dc.identifier.citedreferenceRafoss T. Spatial stochastic simulation offers potential as a quantitative method for pest risk analysis. Risk Analysis, 2003; 23 ( 4 ): 651 – 661.
dc.identifier.citedreferenceReshetin VP, Regens JL. Simulation modeling of anthrax spore dispersion in a bioterrorism incident. Risk Analysis, 2003; 23 ( 6 ): 1135 – 1145.
dc.identifier.citedreferencePouillot R, Beaudeau P, Denis JB, Derouin F. A quantitative risk assessment of waterborne cryptosporidiosis in France using second‐order Monte Carlo simulation. Risk Analysis, 2004; 24 ( 1 ): 1 – 17.
dc.identifier.citedreferenceMerrick JRW, Van Dorp JR, Dinesh V. Assessing uncertainty in simulation‐based maritime risk assessment. Risk Analysis, 2005; 25 ( 3 ): 731 – 743.
dc.identifier.citedreferenceQuiring SM, Schumacher AB, Guikema SD. Incorporating hurricane forecast uncertainty into a decision support application for power outage modeling. Bulletin of American Meteorological Society, 2014; 95: 47 – 58.
dc.identifier.citedreferenceStaid A, Guikema SD, Nateghi R, Quiring SM, Gao MZ. Simulation of tropical cyclone impacts to the U.S. power system under climate change scenarios. Climatic Change, 2014; 127 ( 3 ): 535 – 546.
dc.identifier.citedreferenceBooker G, Sprintson A, Singh C, Guikema SD. Efficient availability evaluation for transport backbone networks. Pp. 1–6 in International Conference on Optical Network Design and Modeling (ONDM 2008), 2008.
dc.identifier.citedreferenceLaw AM, Kelton WD. Simulation Modeling and Analysis, Vol. 2. New York: McGraw‐Hill, 1991.
dc.identifier.citedreferenceRevolution Analytics. foreach: Foreach looping construct for R. R package version 1.4.0., 2012. Available at: http://CRAN.R‐project.org/package=foreach.
dc.identifier.citedreferenceRodgers DP. Improvements in multiprocessor system design. ACM SIGARCH Computer Architect News, 1985; 13 ( 3 ): 225 – 231.
dc.identifier.citedreferenceR Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2014. Available at: http://ww.R‐project.org.
dc.identifier.citedreferenceSmith RL. Use of Monte Carlo simulation for human exposure assessment at a superfund site. Risk Analysis, 1994; 14 ( 4 ): 433 – 439.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.