Show simple item record

Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere

dc.contributor.authorTóth, Gábor
dc.contributor.authorJia, Xianzhe
dc.contributor.authorMarkidis, Stefano
dc.contributor.authorPeng, Ivy Bo
dc.contributor.authorChen, Yuxi
dc.contributor.authorDaldorff, Lars K. S.
dc.contributor.authorTenishev, Valeriy M.
dc.contributor.authorBorovikov, Dmitry
dc.contributor.authorHaiducek, John D.
dc.contributor.authorGombosi, Tamas I.
dc.contributor.authorGlocer, Alex
dc.contributor.authorDorelli, John C.
dc.date.accessioned2017-01-10T19:03:02Z
dc.date.available2017-04-04T14:50:43Zen
dc.date.issued2016-02
dc.identifier.citationTóth, Gábor ; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; Glocer, Alex; Dorelli, John C. (2016). "Extended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere." Journal of Geophysical Research: Space Physics 121(2): 1273-1293.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/135161
dc.description.abstractWe have recently developed a new modeling capability to embed the implicit particle‐in‐cell (PIC) model iPIC3D into the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD‐EPIC) algorithm is a two‐way coupled kinetic‐fluid model. As one of the very first applications of the MHD‐EPIC algorithm, we simulate the interaction between Jupiter’s magnetospheric plasma and Ganymede’s magnetosphere. We compare the MHD‐EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede’s magnetosphere. We find that the Hall MHD and MHD‐EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD‐EPIC model. The MHD‐EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3‐D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD‐EPIC simulation was only about 4 times more than that of the Hall MHD simulation.Key PointsFirst particle‐in‐cell simulation of Ganymede’s magnetosphereThe MHD‐EPIC algorithm makes global kinetic simulations affordableMHD‐EPIC simulation suggests that Galileo observed a flux transfer event during the G8 flyby
dc.publisherJohn Wiley
dc.subject.otherHall MHD
dc.subject.otherGanymede
dc.subject.otherkinetic simulation
dc.subject.otherGalileo
dc.titleExtended magnetohydrodynamics with embedded particle‐in‐cell simulation of Ganymede’s magnetosphere
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/1/jgra52397.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135161/2/jgra52397_am.pdf
dc.identifier.doi10.1002/2015JA021997
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMarkidis, S., G. Lapenta, and Rizwan‐Uddin ( 2010 ), Multi‐scale simulations of plasma with iPIC3D, Math. Comput. Simul., 80, 1509 – 1519, doi: 10.1016/j.matcom.2009.08.038.
dc.identifier.citedreferenceDaldorff, L. K. S., G. Toth, T. I. Gombosi, G. Lapenta, J. Amaya, S. Markidis, and J. U. Brackbill ( 2014 ), Two‐way coupling of a global Hall magnetohydrodynamics model with a local implicit particle‐in‐cell model, J. Comput. Phys., 268, 236 – 254, doi: 10.1016/j.jcp.2014.03.009.
dc.identifier.citedreferenceDedner, A., F. Kemm, D. Kröner, C. Munz, T. Schnitzer, and M. Wesenberg ( 2003 ), Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 645 – 673.
dc.identifier.citedreferenceDorelli, J. C., A. Glocer, G. Collinson, and G. Toth ( 2015 ), The role of the hall effect in the global structure and dynamics of planetary magnetospheres: Ganymede as a case study, J. Geophys. Res. Space Physics, 120, 5377 – 5392, doi: 10.1002/2014JA020951.
dc.identifier.citedreferenceDrake, J. F., M. Swisdak, H. Che, and M. A. Shay ( 2006 ), Electron acceleration from contracting magnetic islands during reconnection, Nature, 443, 553 – 556, doi: 10.1038/nature05116.
dc.identifier.citedreferenceDuling, S., J. Saur, and J. Wicht ( 2014 ), Consistent boundary conditions at nonconducting surfaces of planetary bodies: Applications in a new Ganymede MHD model, J. Geophys. Res. Space Physics, 119, 4412 – 4440, doi: 10.1002/2013JA019554.
dc.identifier.citedreferenceJia, X. ( 2015 ), Satellite magnetotails, in Magnetotails in the Solar System, Geophys. Monogr. Ser., edited by A. Keiling, C. M. Jackman, and P. A. Delamere, John Wiley, Hoboken, N. J., doi: 10.1002/9781118842324.ch8.
dc.identifier.citedreferenceJia, X., R. J. Walker, M. G. Kivelson, K. K. Khurana, and J. A. Linker ( 2008 ), Three‐dimensional MHD simulations of Ganymede’s magnetosphere, J. Geophys. Res., 113, A06212, doi: 10.1029/2007JA012748.
dc.identifier.citedreferenceJia, X., R. J. Walker, M. G. Kivelson, K. K. Khurana, and J. A. Linker ( 2009 ), Properties of Ganymede’s magnetosphere inferred from improved three‐dimensional MHD simulations, J. Geophys. Res., 114, A09209, doi: 10.1029/2009JA014375.
dc.identifier.citedreferenceJia, X., R. J. Walker, M. G. Kivelson, K. K. Khurana, and J. A. Linker ( 2010 ), Dynamics of Ganymede’s magnetopause: Intermittent reconnection under steady external conditions, J. Geophys. Res., 115, A12202, doi: 10.1029/2010JA015771.
dc.identifier.citedreferenceJia, X., J. A. Slavin, T. I. Gombosi, L. K. S. Daldorff, G. Toth, and B. van der Holst ( 2015 ), Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction, J. Geophys. Res. Space Physics, 120, 4763 – 4775, doi: 10.1002/2015JA021143.
dc.identifier.citedreferenceKivelson, M., K. Khurana, F. Coroniti, S. Joy, C. Russell, R. Walker, J. Warnecke, L. Bennett, and C. Polanskey ( 1997 ), Magnetic field and magnetosphere of Ganymede, Geophys. Res. Lett., 24, 2155 – 2158.
dc.identifier.citedreferenceKivelson, M. G., J. Warnecke, L. Bennett, S. Joy, K. Khurana, J. A. Linker, C. Russell, R. J. Walker, and C. Polanskey ( 1998 ), Ganymede’s magnetosphere: Magnetometer overview, J. Geophys. Res., 103 ( E9 ), 19,963 – 19,972, doi: 10.1029/98JE00227.
dc.identifier.citedreferenceKivelson, M. G., K. K. Khurana, and M. Volwerk ( 2002 ), The permanent and inductive magnetic moments of Ganymede, Icarus, 157, 507 – 522.
dc.identifier.citedreferenceKivelson, M. G., F. Bagenal, F. M. Neubauer, W. Kurth, C. Paranicas, and J. Saur ( 2004 ), Magnetospheric interactions with satellites, in Jupiter: The Planet, Satellites and Magnetosphere, edited by F. Bagenal, T. E. Dowling, and W. B. McKinnon, pp. 513 – 536, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceKopp, A., and W.‐H. Ip ( 2002 ), Resistive MHD simulations of Ganymede’s magnetosphere 2. Time variabilities of the magnetic field topology, J. Geophys. Res., 107 ( A12 ), 1490, doi: 10.1029/2001JA005071.
dc.identifier.citedreferenceLapenta, G., S. Markidis, A. Divin, M. Goldman, and D. Newman ( 2010 ), Scales of guide field reconnection at the hydrogen mass ratio, Phys. Plasmas, 17 ( 8 ), 082106, doi: 10.1063/1.3467503.
dc.identifier.citedreferenceLiljeblad, E., T. Sundberg, T. Karlsson, and A. Kullen ( 2014 ), Statistical investigation of Kelvin‐Helmholtz waves at the magnetopause of Mercury, J. Geophys. Res. Space Physics, 119, 9670 – 9683, doi: 10.1002/2014JA020614.
dc.identifier.citedreferenceNeubauer, F. M. ( 1998 ), The sub‐Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere, J. Geophys. Res., 103, 19,843 – 19,866, doi: 10.1029/97JE03370.
dc.identifier.citedreferencePaty, C., and R. Winglee ( 2004 ), Multi‐fluid simulations of Ganymede’s magnetosphere, Geophys. Res. Lett., 31, L24806, doi: 10.1029/2004GL021220.
dc.identifier.citedreferencePaty, C., W. Paterson, and R. Winglee ( 2008 ), Ion energization in Ganymede’s magnetosphere: Using multifluid simulations to interpret ion energy spectrograms, J. Geophys. Res., 113, A06211, doi: 10.1029/2007JA012848.
dc.identifier.citedreferencePowell, K., P. Roe, T. Linde, T. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Compt. Phys., 154, 284 – 309.
dc.identifier.citedreferencePowell, K. G. ( 1994 ), An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), Tech. Rep. 94‐24, Inst. for Comput. Appl. in Sci. and Eng., NASA Langley Space Flight Center, Hampton, Va.
dc.identifier.citedreferenceRicci, P., G. Lapenta, and J. U. Brackbill ( 2002 ), Gem reconnection challenge: Implicit kinetic simulations with the physical mass ratio, Geophys. Res. Lett., 29 ( 23 ), 2088, doi: 10.1029/2002GL015314.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., D. L. De Zeeuw, T. I. Gombosi, and K. G. Powell ( 2006 ), A parallel explicit/implicit time stepping scheme on block‐adaptive grids, J. Comput. Phys., 217, 722 – 758, doi: 10.1016/j.jcp.2006.01.029.
dc.identifier.citedreferenceTóth, G., Y. J. Ma, and T. I. Gombosi ( 2008 ), Hall magnetohydrodynamics on block adaptive grids, J. Comput. Phys., 227, 6967 – 6984, doi: 10.1016/j.jcp.2008.04.010.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.