Show simple item record

Differentiating tumor heterogeneity in formalin‐fixed paraffin‐embedded (FFPE) prostate adenocarcinoma tissues using principal component analysis of matrix‐assisted laser desorption/ionization imaging mass spectral data

dc.contributor.authorPanderi, Irene
dc.contributor.authorYakirevich, Evgeny
dc.contributor.authorPapagerakis, Silvana
dc.contributor.authorNoble, Lelia
dc.contributor.authorLombardo, Kara
dc.contributor.authorPantazatos, Dionysios
dc.date.accessioned2017-01-10T19:03:07Z
dc.date.available2018-03-01T16:43:50Zen
dc.date.issued2017-01-30
dc.identifier.citationPanderi, Irene; Yakirevich, Evgeny; Papagerakis, Silvana; Noble, Lelia; Lombardo, Kara; Pantazatos, Dionysios (2017). "Differentiating tumor heterogeneity in formalin‐fixed paraffin‐embedded (FFPE) prostate adenocarcinoma tissues using principal component analysis of matrix‐assisted laser desorption/ionization imaging mass spectral data." Rapid Communications in Mass Spectrometry 31(2): 160-170.
dc.identifier.issn0951-4198
dc.identifier.issn1097-0231
dc.identifier.urihttps://hdl.handle.net/2027.42/135165
dc.publisherWiley Periodicals, Inc.
dc.titleDifferentiating tumor heterogeneity in formalin‐fixed paraffin‐embedded (FFPE) prostate adenocarcinoma tissues using principal component analysis of matrix‐assisted laser desorption/ionization imaging mass spectral data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135165/1/rcm7776.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135165/2/rcm7776_am.pdf
dc.identifier.doi10.1002/rcm.7776
dc.identifier.sourceRapid Communications in Mass Spectrometry
dc.identifier.citedreferenceC. B. Fowler, D. L. Evers, T. J. O’Leary, J. T. Mason. Antigen retrieval causes protein unfolding evidence for a linear epitope model of recovered immunoreactivity. J. Histochem. Cytochem. 2011, 59, 366.
dc.identifier.citedreferenceL. Guo, I. Panderi, D. D. Yan, K. Szulak, Y. Li, Y.‐T. Chen, H. Ma, D. B. Niesen, N. Seeram, A. Ahmed, B. Yan, D. Pantazatos, W. Lu. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 2013, 7, 8780.
dc.identifier.citedreferenceS. Magdeldin, T. Yamamoto. Toward deciphering proteomes of formalin‐fixed paraffin‐embedded (FFPE) tissues. Proteomics 2012, 12, 1045.
dc.identifier.citedreferenceH. R. Aerni, D. S. Cornett, R. M. Caprioli. High throughput profiling of formalin‐fixed paraffin embedded tissue using parallel electrophoresis and matrix‐assisted laser desorption ionization mass spectrometry. Anal. Chem. 2009, 81, 7490.
dc.identifier.citedreferenceD. Calligaris, R. Longuespée, D. Debois, D. Asakawa, A. Turtoi, V. Castronovo, A. Noël, V. Bertrand, M.‐C. De Pauw‐Gillet, E. De Pauw. Selected protein monitoring in histological sections by targeted MALDI‐FTICR in‐source decay imaging. Anal. Chem. 2013, 85, 2117.
dc.identifier.citedreferenceS. Khatib‐Shahidi, M. Andersson, J. L. Herman, T. A. Gillespie, R. M. Caprioli. Direct molecular analysis of whole‐body animal tissue sections by imaging MALDI mass spectrometry. Anal. Chem. 2006, 78, 6448.
dc.identifier.citedreferenceL. H. Cazares, D. Troyer, S. Mendrinos, R. A. Lance, J. O. Nyalwidhe, H. A. Beydoun, M. A. Clements, R. R. Drake, O. J. Semmes. Imaging mass spectrometry of a specific fragment of mitogen‐activated protein kinase/extracellular signal‐regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin. Cancer Res. 2009, 15, 5541.
dc.identifier.citedreferenceM. R. Groseclose, P. P. Massion, P. Chaurand, R. M. Caprioli. High‐throughput proteomic analysis of formalin‐fixed paraffin‐embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 2008, 8, 3715.
dc.identifier.citedreferenceH. C. Diehl, B. Beine, J. Elm, D. Trede, M. Ahrens, M. Eisenacher, K. Marcus, H. E. Meyer, C. Henkel. The challenge of on‐tissue digestion for MALDI MSI – A comparison of different protocols to improve imaging experiments. Anal. Bioanal. Chem. 2015, 407, 2223.
dc.identifier.citedreferenceT. Goto, N. Terada, T. Inoue, T. Kobayashi, K. Nakayama, Y. Okada, T. Yoshikawa, Y. Miyazaki, U. Masayuki, N. Utsunomiya, Y. Makino, S. Sumiyoshi, T. Yamasaki, T. Kamba, O. Ogawa. Decreased expression of lysophosphatidylcholine (16:0/OH) in high resolution imaging mass spectrometry independently predicts biochemical recurrence after surgical treatment for prostate cancer. The Prostate 2015, 75, 1821.
dc.identifier.citedreferenceH. Wang, J. P. DeGnore, B. D. Kelly, J. True, K. Garsha, C. Bieniarz. A technique for relative quantitation of cancer biomarkers in formalin‐fixed, paraffin embedded (FFPE) tissue using stable‐isotope label based mass spectrometry imaging (SILMSI). J. Mass Spectrom. 2015, 50, 1088.
dc.identifier.citedreferenceS. Steurer, C. Borkowski, S. Odinga, M. Buchholz, C. Koop, H. Huland, M. Becker, M. Witt, D. Trede, M. Omidi, O. Kraus, A. S. Bahar, A. S. Seddiqi, J. M. Singer, M. Kwiatkowski, M. Trusch, R. Simon, M. Wurlitzer, S. Minner, T. Schlomm, G. Sauter, H. Schlüter. MALDI mass spectrometric imaging based identification of clinically relevant signals in prostate cancer using large‐scale tissue microarrays. Int. J. Cancer 2013, 133, 920.
dc.identifier.citedreferenceM. Ringnér. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303.
dc.identifier.citedreferenceD. Calligaris, D. R. Feldman, I. Norton, O. Olubiyi, A. N. Changelian, R. Machaidze, M. L. Vestala, E. R. Laws, I. F. Dunn, S. Santagata, N. Y. R. Agar. MALDI mass spectrometry imaging analysis of pituitary adenomas for near‐real‐time tumor delineation. Proc. Natl. Acad. Sci. 2015, 112, 9978.
dc.identifier.citedreferenceA. Cassese, S. R. Ellis, N. O. Potočnik, E. Burgermeister, M. Ebert, A. Walch, A. M. J. M. van den Maagdenberg, L. A. McDonnell, R. M. A. Heeren, B. Balluf. Spatial autocorrelation in mass spectrometry imaging. Anal. Chem. 2016, 88, 5871.
dc.identifier.citedreferenceJ. M. Fonville, C. Carter, O. Cloarec, J. K. Nicholson, J. C. Lindon, J. Bunch, E. Holmes. Robust data processing and normalization strategy for MALDI mass spectrometric imaging. Anal. Chem. 2012, 84, 1310.
dc.identifier.citedreferenceA. Broersen, R. van Liere, A F. M. Altelaar, R. M. A. Heeren, L. A. McDonnell. Automated, feature‐based image alignment for high‐resolution imaging mass spectrometry of large biological samples. J. Am. Soc. Mass Spectrom. 2008, 19, 823.
dc.identifier.citedreferenceL. O’Brien, P. A. Hosick, K. John, D. E. Stec, T. D. Hinds. Biliverdin reductase isozymes in metabolism. Trends Endocrinol. Metabol. 2015, 26, 212.
dc.identifier.citedreferenceP. M. Angel, R. M. Caprioli. Matrix‐assisted laser desorption ionization imaging mass spectrometry: In situ molecular mapping. Biochemistry 2013, 52, 3818.
dc.identifier.citedreferenceA. Bodzon‐Kulakowska, P. Suder. Imaging mass spectrometry: Instrumentation, applications, and combination with other visualization techniques. Mass Spectrom. Rev. 2016, 35, 147.
dc.identifier.citedreferenceS. R. Fagerer, A. Römpp, K. Jefimovs, R. Brönnimann, G. Hayenga, R. F. Steinhoff, J. Krismer, M. Pabst, A. J. Ibáñez, R. Zenobi. Resolution pattern for mass spectrometry imaging. Rapid Commun. Mass Spectrom. 2015, 29, 1019.
dc.identifier.citedreferenceJ. D. Watrous, T. Alexandrov, P. C. Dorrestein, The evolving field of imaging mass spectrometry and its impact on future biological research. J. Mass Spectrom. 2011, 46, 209.
dc.identifier.citedreferenceR. F. Menger, W. L. Stutts, D. S. Anbukumar, J. A. Bowden, D. A. Ford, R. A. Yost. MALDI mass spectrometric imaging of cardiac tissue following myocardial infarction in a rat coronary artery ligation model. Anal. Chem. 2012, 84, 1117.
dc.identifier.citedreferenceS. Angeletti, G. Dicuonzo, A. Lo Presti, E. Cella, F. Crea, A. Avola, M. Andrea Vitali, M. Fagioni, L. De Florio. MALDI‐TOF mass spectrometry and blakpc gene phylogenetic analysis of an outbreak of carbapenem‐resistant K. pneumoniae strains. New Microbiol. 2015, 38, 541.
dc.identifier.citedreferenceC. L. Gatlin, K. Y. White, M. B. Tracy, C. E. Wilkins, O. J. Semmes, J. O. Nyalwidh, R. R. Drake, D. I. Malyarenko. Enhancement in MALDI‐TOF MS analysis of the low molecular weight human serum proteome. J. Mass Spectrom. 2011, 46, 85.
dc.identifier.citedreferenceC. Marquardt, T. Tolstik, C. Bielecki, R. Kaufmann, A. C. Crecelius, U. S. Schubert, U. Settmacher, A. Stallmach, O. Z. Dirsch. MALDI imaging‐based classification of hepatocellular carcinoma and non‐malignant lesions in fibrotic liver tissue. Gastroenterology 2015, 53, 33.
dc.identifier.citedreferenceM. A. M. Rodrigo, O. Zitka, S. Krizkov, A. Moulick, V. Adam, R. Kizek. MALDI‐TOF MS as evolving cancer diagnostic tool: A review. J. Pharm. Biomed. Anal. 2014, 95, 245.
dc.identifier.citedreferenceE. H. Seeley, R. M. Caprioli. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 2011, 29, 136.
dc.identifier.citedreferenceL. A. McDonnell, G. L. Corthals, S. M. Willems, A. van Remoortere, R. J. van Zeijl, A. M. Deelder. Peptide and protein imaging mass spectrometry in cancer research. J. Proteomics 2010, 73, 1921.
dc.identifier.citedreferenceS. R. Oppenheimer, D. Mi, M. E. Sanders, R. M. Caprioli. A molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J. Proteome Res. 2010, 9, 2182.
dc.identifier.citedreferenceR. J. A. Goodwin, S. R. Pennington, A. R. Pitt. Protein and peptides in pictures: Imaging with MALDI mass spectrometry. Proteomics 2008, 8, 3785.
dc.identifier.citedreferenceR. L. Siegel, K. D. Miller, A. Jemal. Cancer statistics. Cancer J. Clin. 2016, 66, 7.
dc.identifier.citedreferenceJ. Ferlay, E. Steliarova‐Foucher, J. Lortet‐Tieulent, S. Rosso, J. W. W. Coebergh, H. Comber, D. Forman, F. Bray. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374.
dc.identifier.citedreferenceC. A. Evans, A. Glen, C. L. Eaton, S. Larré, J. W. F. Catto, F. C. Hamdy, P. C. Wright, I. Rehman. Prostate cancer proteomics: The urgent need for clinically validated biomarkers. Proteomics Clin. Appl. 2009, 3, 197.
dc.identifier.citedreferenceJ. C. Byrne, M. R. Downes, N. O’Donoghue, C. O’Keane, A. O’Neill, Y. Fan, J. M. Fitzpatrick, M. Dunn, R. W. Watson. 2D‐DIGE as a strategy to identify serum markers for the progression of prostate cancer. J. Proteome Res. 2009, 8, 942.
dc.identifier.citedreferenceJ. O. R. Gustafsson, M. K. Oehler, A. Ruszkiewicz, S. R. McColl, P. Hoffmann. MALDI imaging mass spectrometry (MALDI‐IMS) – Application of spatial proteomics for ovarian cancer classification and diagnosis. Int. J. Mol. Sci. 2011, 12, 773.
dc.identifier.citedreferenceZ. Xiao, B. L. Adam, L. H. Cazares, M. A. Clements, J. W. Davis, P. F. Schellhammer, E. A. Dalmasso, G. L. Wright. Quantitation of serum prostate‐specific membrane antigen by a novel protein biochip immunoassay discriminates benign from malignant prostate disease. Cancer Res. 2001, 61, 6029.
dc.identifier.citedreferenceL. J. M. Dekker, P. C. Burgers, H. Charif, A. L. C. T. van Rijswijk, M. K. Titulaer, G. Jenster, R. Bischoff, C. H. Bangma, T. M. Luider. Differential expression of protease activity in serum samples of prostate carcinoma patients with metastases. Proteomics 2010, 10, 2348.
dc.identifier.citedreferenceJ. A. Al‐Ruwaili, S. E. Larkin, B. A. Zeidan, M. G. Taylor, C. N. Adra, C. L. Aukim‐Hastie, P. A. Townsend. Discovery of serum protein biomarkers for prostate cancer progression by proteomic analysis. Cancer Genomics Proteomics 2010, 7, 93.
dc.identifier.citedreferenceC. Fania, I. Sogno, M. Vasso, E. Torretta, R. Leone, A. Bruno, P. Consonni, A. Albini, C. Gelfi. A PSA‐guided approach for a better diagnosis of prostatic adenocarcinoma based on MALDI profiling and peptide identification. Clin. Chim. Acta 2015, 439, 42.
dc.identifier.citedreferenceC. D. Calvano, A. Aresta, M. Iacovone, G. E. De Benedetto, C. G. Zambonin, M. Battaglia, P. Ditonno, M. Rutigliano, C. Bettocchi. Optimization of analytical and pre‐analytical conditions for MALDI‐TOF‐MS human urine protein profiles. J. Pharm. Biomed. Anal. 2010, 51, 907.
dc.identifier.citedreferenceX. Wang, J. Han, D. B. Hardie, J. Yanga, C. H. Borchersa. The use of matrix coating assisted by an electric field (MCAEF) to enhance mass spectrometric imaging of human prostate cancer biomarkers. J. Mass Spectrom. 2016, 51, 86.
dc.identifier.citedreferenceB. Flatley, P. Malone, R. Cramer. MALDI mass spectrometry in prostate cancer biomarker discovery. Biochim. Biophys. Acta 2014, 1844, 940.
dc.identifier.citedreferenceD. Bonnel, R. Longuespee, J. Franck, M. Roudbaraki, P. Gosset, R. Day, M. Salzet, I. Fournier. Multivariate analyses for biomarkers hunting and validation through on‐tissue bottom‐up or in‐source decay in MALDI‐MSI: application to prostate cancer. Anal. Bioanal. Chem. 2011, 401, 149.
dc.identifier.citedreferenceK. Schwamborn, R. C. Krieg, M. Reska, G. Jakse, R. Knuechel, A. Wellmann. Identifying prostate carcinoma by MALDI‐imaging. Int. J. Mol. Med. 2007, 20, 155.
dc.identifier.citedreferenceY. Zheng, Y. Xu, B. Ye, J. Lei, M. H. Weinstein, M. P. O’Leary, J. P. Richie, S. C. Mok, B. C. Liu. Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 2003, 98, 2576.
dc.identifier.citedreferenceZ. I. Khamis, K. A. Iczkowski, Z. J. Sahab, Q. X. Sang. Protein profiling of isolated leukocytes, myofibroblasts, epithelial, basal, and endothelial cells from normal, hyperplastic, cancerous, and inflammatory human prostate tissues. J. Cancer 2010, 1, 70.
dc.identifier.citedreferenceJ. D. Pallua, G. Schaefer, C. Seifarth, M. Becker, S. Meding, S. Rauser, A. Walch, M. Handler, M. Netzer, M. Popovscaia, M. Osl, C. Baumgartner, H. Lindner, L. Kremser, B. Sarg, G. Bartsch, C. W. Huck, G. K. Bonn, H. Klocker. MALDI‐MS tissue imaging identification of biliverdin reductase B overexpression in prostate cancer. J. Proteomics 2013, 91, 500.
dc.identifier.citedreferenceA. Y. Liu, H. Zhang, C. M. Sorensen, D. L. Diamond. Analysis of prostate cancer by proteomics using tissue specimens. J. Urol. 2005, 173, 73.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.