Three Years After Transplants in Human Mandibles, Histological and In‐Line Holotomography Revealed That Stem Cells Regenerated a Compact Rather Than a Spongy Bone: Biological and Clinical Implications
dc.contributor.author | Giuliani, Alessandra | |
dc.contributor.author | Manescu, Adrian | |
dc.contributor.author | Langer, Max | |
dc.contributor.author | Rustichelli, Franco | |
dc.contributor.author | Desiderio, Vincenzo | |
dc.contributor.author | Paino, Francesca | |
dc.contributor.author | De Rosa, Alfredo | |
dc.contributor.author | Laino, Luigi | |
dc.contributor.author | d’Aquino, Riccardo | |
dc.contributor.author | Tirino, Virginia | |
dc.contributor.author | Papaccio, Gianpaolo | |
dc.date.accessioned | 2017-01-10T19:03:13Z | |
dc.date.available | 2017-01-10T19:03:13Z | |
dc.date.issued | 2013-04 | |
dc.identifier.citation | Giuliani, Alessandra; Manescu, Adrian; Langer, Max; Rustichelli, Franco; Desiderio, Vincenzo; Paino, Francesca; De Rosa, Alfredo; Laino, Luigi; d’Aquino, Riccardo; Tirino, Virginia; Papaccio, Gianpaolo (2013). "Three Years After Transplants in Human Mandibles, Histological and In‐Line Holotomography Revealed That Stem Cells Regenerated a Compact Rather Than a Spongy Bone: Biological and Clinical Implications." STEM CELLS Translational Medicine 2(4): 316-324. | |
dc.identifier.issn | 2157-6564 | |
dc.identifier.issn | 2157-6580 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/135169 | |
dc.publisher | AlphaMed Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Stem cell transplantation | |
dc.subject.other | Clinical trials | |
dc.subject.other | Bone | |
dc.subject.other | Tissue regeneration | |
dc.subject.other | Differentiation | |
dc.title | Three Years After Transplants in Human Mandibles, Histological and In‐Line Holotomography Revealed That Stem Cells Regenerated a Compact Rather Than a Spongy Bone: Biological and Clinical Implications | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.contributor.affiliationum | Department of Computational Medicine and Bioinformatics, Center for Organogenesis of Complex Tissues, University of Michigan, Ann Arbor, Michigan, USA | |
dc.contributor.affiliationother | Dipartimento di Odontostomatologia, Seconda Università degli Studi di Napoli, Naples, Italy | |
dc.contributor.affiliationother | Dipartimento di Scienze Cliniche e Odontostomatologiche, Sezione di Biochimica, Biologia e Fisica, Università Politecnica delle Marche, Ancona, Italy | |
dc.contributor.affiliationother | Creatis, INSA-Lyon, Lyon, France | |
dc.contributor.affiliationother | Université CB, Lyon, France | |
dc.contributor.affiliationother | European Synchrotron Radiation Facility, Grenoble, France | |
dc.contributor.affiliationother | Dipartimento di Medicina Sperimentale, Sezione di Istologia e Medicina Rigenerativa, Seconda Università degli Studi di Napoli, Naples, Italy | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/135169/1/sct3201324316.pdf | |
dc.identifier.doi | 10.5966/sctm.2012-0136 | |
dc.identifier.source | STEM CELLS Translational Medicine | |
dc.identifier.citedreference | Salgado AJ, Oliveira JT, Pedro AJ. Adult stem cells in bone and cartilage tissue engineering. Curr Stem Cell Res Ther 2006; 1: 345 – 364. | |
dc.identifier.citedreference | Lemaire V, Tobin FL, Greller LD. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 2004; 229: 293 – 309. | |
dc.identifier.citedreference | Sukumar S, Drízhal I. Bone grafts in periodontal therapy. Acta Medica (Hradec Kralove) 2008; 51: 203 – 207. | |
dc.identifier.citedreference | Pieske O, Wittmann A, Zaspel J. Autologous bone graft versus demineralized bone matrix in internal fixation of ununited long bones. J Trauma Manag Outcomes 2009; 3: 11. | |
dc.identifier.citedreference | Engstrand T. Biomaterials and biologics in craniofacial reconstruction. J Craniofac Surg 2012; 23: 239 – 242. | |
dc.identifier.citedreference | d’Aquino R, Tirino V, Desiderio V. Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. Eur Cell Mater 2011; 21: 304 – 316. | |
dc.identifier.citedreference | d’Aquino R, De Rosa A, Laino G. Human dental pulp stem cells: From biology to clinical applications. J Exp Zool B Mol Dev Evol 2009; 312B: 408 – 415. | |
dc.identifier.citedreference | Graziano A, d’Aquino R, Laino G. Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 2008; 41: 1 – 11. | |
dc.identifier.citedreference | Paino F, Ricci G, De Rosa A. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater 2010; 20: 295 – 305. | |
dc.identifier.citedreference | d’Aquino R, Graziano A, Sampaolesi M. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: A pivotal synergy leading to adult bone tissue formation. Cell Death Differ 2007; 14: 1162 – 1171. | |
dc.identifier.citedreference | Louis PJ. Bone grafting the mandible. Dent Clin North Am 2011; 55: 673 – 695. | |
dc.identifier.citedreference | Khaled EG, Saleh M, Hindocha S. Tissue engineering for bone production- stem cells, gene therapy and scaffolds. Open Orthop J 2011; 5: 289 – 295. | |
dc.identifier.citedreference | Langer M, Cloetens P, Peyrin F. Regularization of phase retrieval with phase-attenuation duality prior for 3D holotomography. IEEE Trans Image Process 2010; 19: 2428 – 2436. | |
dc.identifier.citedreference | Cloetens P, Mache R, Schlenker M. Quantitative phase tomography of Arabidopsis seeds reveals intercellular void network. Proc Natl Acad Sci USA 2006; 103: 14626 – 14630. | |
dc.identifier.citedreference | Cloetens P, Barrett R, Baruchel J. Phase objects in synchrotron radiation hard x-ray imaging. J Phys D Appl Phys 1996; 29: 133 – 146. | |
dc.identifier.citedreference | Giuliani A, Komlev V, Rustichelli F Skrzypek JJ Rustichelli F Three-dimensional imaging by microtomography of x-ray synchrotron radiation and neutrons Innovative Technological Materials 2010 Berlin, Germany Springer-Verlag 123 – 177. | |
dc.identifier.citedreference | Spath L, Rotilio V, Alessandrini M. Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med 2010; 14: 1635 – 1644. | |
dc.identifier.citedreference | Cancedda R, Cedola A, Giuliani A. Bulk and interface investigations of scaffolds and tissue-engineered bones by X-ray microtomography and X-ray microdiffraction. Biomaterials 2007; 28: 2505 – 2524. | |
dc.identifier.citedreference | Giuliani A, Frati C, Rossini A. High-resolution x-ray microtomography for three-dimensional imaging of cardiac progenitor cell homing in infarcted rat hearts. J Tissue Eng Regen Med 2011; 5: e168 – e178. | |
dc.identifier.citedreference | Mangano C, De Rosa A, Desiderio V. The osteoblastic differentiation of dental pulp stem cells and bone formation on different titanium surface textures. Biomaterials 2010; 31: 3543 – 3551. | |
dc.identifier.citedreference | d’Aquino R, De Rosa A, Lanza V. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 2009; 18: 75 – 83. | |
dc.identifier.citedreference | Graziano A, d’Aquino R, Cusella-De Angelis MG. Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol 2008; 214: 166 – 172. | |
dc.identifier.citedreference | Tirino V, Paino F, De Rosa A. Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods Mol Biol 2012; 879: 443 – 463. | |
dc.identifier.citedreference | Laino G, Carinci F, Graziano A. In vitro bone production using stem cells derived from human dental pulp. J Craniofac Surg 2006; 17: 511 – 515. | |
dc.identifier.citedreference | Laino G, d’Aquino R, Graziano A. A new population of human adult dental pulp stem cells: A useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 2005; 20: 1394 – 1402. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.