Show simple item record

Revisiting fetal dose during radiation therapy: evaluating treatment techniques and a custom shield

dc.contributor.authorOwrangi, Amir M.
dc.contributor.authorRoberts, Donald A.
dc.contributor.authorCovington, Elizabeth L.
dc.contributor.authorHayman, James A.
dc.contributor.authorMasi, Kathryn M.
dc.contributor.authorLee, Choonik
dc.contributor.authorMoran, Jean M.
dc.contributor.authorPrisciandaro, Joann I.
dc.date.accessioned2017-01-10T19:04:14Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09
dc.identifier.citationOwrangi, Amir M.; Roberts, Donald A.; Covington, Elizabeth L.; Hayman, James A.; Masi, Kathryn M.; Lee, Choonik; Moran, Jean M.; Prisciandaro, Joann I. (2016). "Revisiting fetal dose during radiation therapy: evaluating treatment techniques and a custom shield." Journal of Applied Clinical Medical Physics 17(5): 1-13.
dc.identifier.issn1526-9914
dc.identifier.issn1526-9914
dc.identifier.urihttps://hdl.handle.net/2027.42/135233
dc.publisherVarian Medial Systems
dc.publisherWiley Periodicals, Inc.
dc.subject.otherperipheral dose
dc.subject.otherfetus
dc.subject.otherfetal shield
dc.subject.otherout‐of‐field dose
dc.titleRevisiting fetal dose during radiation therapy: evaluating treatment techniques and a custom shield
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135233/1/acm20001i.pdf
dc.identifier.doi10.1120/jacmp.v17i5.6135
dc.identifier.sourceJournal of Applied Clinical Medical Physics
dc.identifier.citedreferencePodgorsak MB, Meiler RJ, Kowal H, Kishel SP, Orner JB. Technical management of a pregnant patient undergoing radiation therapy to the head and neck. Med Dosim. 1999; 24 ( 2 ): 121 – 28.
dc.identifier.citedreferencevan der Giessen PH. Calculation and measurement of the dose at points outside the primary beam for photon energies of 6, 10, and 23 MV. Int J Radiat Oncol Biol Phys. 1994; 30 ( 5 ): 1239 – 46.
dc.identifier.citedreferenceStern RL. Peripheral dose from a linear accelerator equipped with multileaf collimation. Med Phys. 1999; 26 ( 4 ): 559 – 63.
dc.identifier.citedreferenceMutic S and Klein EE. A reduction in the AAPM TG‐36 reported peripheral dose distributions with tertiary multileaf collimation. American Association of Physicists in Medicine Task Group 36. Int J Radiat Oncol Biol Phys. 1999; 44 ( 4 ): 947 – 53.
dc.identifier.citedreferenceSherazi S and Kase KR. Measurements of dose from secondary radiation outside a treatment field: effects of wedges and blocks. Int J Radiat Oncol Biol Phys. 1985; 11 ( 12 ): 2171 – 76.
dc.identifier.citedreferenceKase KR, Svensson GK, Wolbarst AB, Marks MA. Measurements of dose from secondary radiation outside a treatment field. Int J Radiat Oncol Biol Phys. 1983; 9 ( 8 ): 1177 – 83.
dc.identifier.citedreferenceAlmberg SS, Frengen J, Lindmo T. Monte Carlo study of in‐field and out‐of‐field dose distributions from a linear accelerator operating with and without a flattening‐filter. Med Phys. 2012; 39 ( 8 ): 5194 – 203.
dc.identifier.citedreferenceKragl G, Baier F, Lutz S, et al. Flattening filter free beams in SBRT and IMRT: dosimetric assessment of peripheral doses. Z Med Phys. 2011; 21 ( 2 ): 91 – 101.
dc.identifier.citedreferenceCashmore J, Ramtohul M, Ford D. Lowering whole‐body radiation doses in pediatric intensity‐modulated radiotherapy through the use of unflattened photon beams. Int J Radiat Oncol Biol Phys. 2011; 80 ( 4 ): 1220 – 27.
dc.identifier.citedreferenceCashmore J. The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys Med Biol. 2008; 53 ( 7 ): 1933 – 46.
dc.identifier.citedreferenceVassiliev ON, Titt U, Ponisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006; 51 ( 7 ): 1907 – 17.
dc.identifier.citedreferenceVassiliev ON, Titt U, Kry SF, Pönisch F, Gillin MT, Mohan R. Monte Carlo study of photon fields from a flattening filter‐free clinical accelerator. Med Phys. 2006; 33 ( 4 ): 820 – 27.
dc.identifier.citedreferenceAtarod M, Shokrani P, Pourmoghadas A. Design of a generally applicable abdominal shield for reducing fetal dose during radiotherapy of common malignancies in pregnant patients. Iran J Radiat Res. 2012; 10 ( 3‐4 ): 151 – 56.
dc.identifier.citedreferenceJosipović M, Nyström H, Kjaer‐Kristoffersen F. IMRT in a pregnant patient: how to reduce the fetal dose? Med Dosim. 2009; 34 ( 4 ): 301 – 10.
dc.identifier.citedreferenceIslam MK, Saeedi F, Al‐Rajhi N. A simplified shielding approach for limiting fetal dose during radiation therapy of pregnant patients. Int J Radiat Oncol Biol Phys. 2001; 49 ( 5 ): 1469 – 73.
dc.identifier.citedreferencePrado KL, Nelson SJ, Nuyttens JJ, Williams TE, Vanek KN. Clinical implementation of the AAPM Task Group 36 recommendations on fetal dose from radiotherapy with photon beams: a head and neck irradiation case report. J Appl Clin Med Phys. 2000; 1 ( 1 ): 1 – 7.
dc.identifier.citedreferenceCygler J, Ding GX, Kendal W, Cross P. Fetal dose for a patient undergoing mantle field irradiation for Hodgkin’s disease. Med Dosim. 1997; 22 ( 2 ): 135 – 37.
dc.identifier.citedreferenceWoo SY, Fuller LM, Cundiff JH, et al. Radiotherapy during pregnancy for clinical stages IA‐IIA Hodgkin’s disease. Int J Radiat Oncol Biol Phys. 1992; 23 ( 2 ): 407 – 12.
dc.identifier.citedreferencevan der Giessen PH and Hurkmans CW. Calculation and measurement of the dose to points outside the primary beam for Co‐60 gamma radiation. Int J Radiat Oncol Biol Phys. 1993; 27 ( 3 ): 717 – 24.
dc.identifier.citedreferenceBednarz B and Xu XG. A feasibility study to calculate unshielded fetal doses to pregnant patients in 6‐MV photon treatments using Monte Carlo methods and anatomically realistic phantoms. Med Phys. 2008; 35 ( 7 ): 3054 – 61.
dc.identifier.citedreferenceWang L and Ding GX. The accuracy of the out‐of‐field dose calculations using a model based algorithm in a commercial treatment planning system. Phys Med Biol. 2014; 59 ( 13 ): N113 – 28.
dc.identifier.citedreferenceHuang JY, Followill DS, Wang XA, et al. Accuracy and sources of error of out‐of field dose calculations by a commercial treatment planning system for intensity‐modulated radiation therapy treatments. J Appl Clin Med Phys. 2013; 14 ( 2 ): 4139.
dc.identifier.citedreferenceHowell RM, Scarboro SB, Kry SF, et al. Accuracy of out‐of‐field dose calculations by a commercial treatment planning system. Phys Med Biol. 2010; 55 ( 23 ): 6999 – 7008.
dc.identifier.citedreferencePrisciandaro JI, Makkar A, Fox CJ, et al. Dosimetric review of cardiac implantable electronic device patients receiving radiotherapy, J Appl Clin Med Phys. 2015; 16 ( 1 ): 5189.
dc.identifier.citedreferenceKry SF, Titt U, Pönisch F, et al. A Monte Carlo model for calculating out‐of‐field dose from a varian 6 MV beam. Med Phys. 2006 Nov; 33 ( 11 ): 4405 – 13.
dc.identifier.citedreferenceVarian Medical Systems. Eclipse Photon and Electron Reference Guide. Palo Alto, CA: Varian Medial Systems; 2015.
dc.identifier.citedreferenceStovall M, Blackwell CR, Cundiff J, et al. Fetal dose from radiotherapy with photon beams: report of AAPM Radiation Therapy Committee Task Group No. 36. Med Phys. 1995; 22 ( 1 ): 63 – 82.
dc.identifier.citedreferenceInternational Commission on Radiological Protection. Pregnancy and medical radiation. Ann ICRP. 2000; 30 ( 1 ): iii – viii, 1–43.
dc.identifier.citedreferenceNuyttens JJ, Prado KL, Jenrette JM, Williams TE. Fetal dose during radiotherapy: clinical implementation and review of the literature. Cancer Radiother. 2002; 6 ( 6 ): 352 – 57.
dc.identifier.citedreferenceKal HB and Struikmans H. Radiotherapy during pregnancy: fact and fiction. Lancet Oncol. 2005; 6 ( 5 ): 328 – 33.
dc.identifier.citedreferenceMutic S, Esthappan J, Klein EE. Peripheral dose distributions for a linear accelerator equipped with a secondary multileaf collimator and universal wedge. J Appl Clin Med Phys. 2002; 3 ( 4 ): 302 – 09.
dc.identifier.citedreferenceFraass BA and van de Geijn J. Peripheral dose from megavolt beams. Med Phys. 1983; 10 ( 6 ): 809 – 18.
dc.identifier.citedreferencevan der Giessen PH. A simple and generally applicable method to estimate the peripheral dose in radiation teletherapy with high energy x‐rays or gamma radiation. Int J Radiat Oncol Biol Phys. 1996; 35 ( 5 ): 1059 – 68.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.