Show simple item record

Bioeffects Considerations for Diagnostic Ultrasound Contrast Agents

dc.contributor.authorMiller, Douglas L.
dc.contributor.authorAverkiou, Michalakis A.
dc.contributor.authorBrayman, Andrew A.
dc.contributor.authorEverbach, E. Carr
dc.contributor.authorHolland, Christy K.
dc.contributor.authorWible, James H.
dc.contributor.authorWu, Junru
dc.date.accessioned2017-01-10T19:04:17Z
dc.date.available2017-01-10T19:04:17Z
dc.date.issued2008-04
dc.identifier.citationMiller, Douglas L.; Averkiou, Michalakis A.; Brayman, Andrew A.; Everbach, E. Carr; Holland, Christy K.; Wible, James H.; Wu, Junru (2008). "Bioeffects Considerations for Diagnostic Ultrasound Contrast Agents." Journal of Ultrasound in Medicine 27(4): 611-632.
dc.identifier.issn0278-4297
dc.identifier.issn1550-9613
dc.identifier.urihttps://hdl.handle.net/2027.42/135236
dc.publisherAmerican Institute of Ultrasound in Medicine
dc.publisherWiley Periodicals, Inc.
dc.subject.othercontrast agent adverse effects
dc.subject.otheracoustic cavitation
dc.subject.othermechanical index
dc.subject.otherechocardiography
dc.titleBioeffects Considerations for Diagnostic Ultrasound Contrast Agents
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumReceived April 12, 2007, from the Department of Radiology, University of Michigan, Ann Arbor, Michigan USA
dc.contributor.affiliationotherTyco Healthcare/Mallinckrodt Inc, St Louis, Missouri USA
dc.contributor.affiliationotherDepartment of Physics, University of Vermont, Burlington, Vermont USA.
dc.contributor.affiliationotherDepartment of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio USA
dc.contributor.affiliationotherDepartment of Engineering, Swarthmore College, Swarthmore, Pennsylvania USA
dc.contributor.affiliationotherApplied Physics Laboratory, University of Washington, Seattle, Washington USA
dc.contributor.affiliationotherPhilips Medical Systems, Bothell, Washington USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135236/1/jum2008274611.pdf
dc.identifier.doi10.7863/jum.2008.27.4.611
dc.identifier.sourceJournal of Ultrasound in Medicine
dc.identifier.citedreferencevan der Wouw P, Brauns AC, Bailey SE, Powers JE, Wilde AA. Premature ventricular contractions during triggered imaging with ultrasound contrast. J Am Soc Echocardiogr 2000; 13: 288 –294.
dc.identifier.citedreferenceKobayashi N, Yasu T, Yamada S, et al. Influence of contrast ultrasonography with perflutren lipid microspheres on microvessel injury. Circ J 2003; 67: 630 –636.
dc.identifier.citedreferenceMiller DL, Li P, Armstrong WF. The effect of time and of vasoactive drugs on capillary leakage induced during myocardial contrast echocardiography. Echocardiography 2004; 21: 125 –132.
dc.identifier.citedreferenceLi P, Armstrong WR, Miller DL. Impact of myocardial contrast echocardiography on vascular permeability: comparison of three different contrast agents. Ultrasound Med Biol 2004; 30: 83 –91.
dc.identifier.citedreferenceMiller DL, Li P, Gordon D, Armstrong WF. Histological characterization of microlesions induced by myocardial contrast echocardiography. Echocardiography 2005; 22: 25 –34.
dc.identifier.citedreferenceChapman S, Windle J, Xie F, McGrain A, Porter TR. Incidence of cardiac arrhythmias with therapeutic versus diagnostic ultrasound and intravenous microbubbles. J Ultrasound Med 2005; 24: 1099 –1107.
dc.identifier.citedreferenceMiller DL, Gies RA. Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine. Ultrasound Med Biol 1998; 24: 1201 –1208.
dc.identifier.citedreferenceMiller DL, Gies RA. The influence of ultrasound frequency and gas-body composition on the contrast agent-medicated enhancement of vascular bioeffects in mouse intestine. Ultrasound Med Biol 2000; 26: 307 –313.
dc.identifier.citedreferenceKobayashi N, Yasu T, Yamada S, et al. Endothelial cell injury in venule and capillary induced by contrast ultrasonography. Ultrasound Med Biol 2002; 28: 949 –956.
dc.identifier.citedreferenceSchlachetzki F, Holscher T, Koch HJ, et al. Observation on the integrity of the blood-brain barrier after microbubble destruction by diagnostic transcranial color-coded sonography. J Ultrasound Med 2002; 21: 419 –429.
dc.identifier.citedreferenceWible JH Jr, Galen KP, Wojdyla JK, Hughes MS, Klibanov AL, Brandenburger GH. Microbubbles induce renal hemorrhage when exposed to diagnostic ultrasound in anesthetized rats. Ultrasound Med Biol 2002; 28: 1535 –1546.
dc.identifier.citedreferenceO’Brien WD Jr, Simpson DG, Frizzell LA, Zachary JF. Effect of contrast agent on the incidence and magnitude of ultrasound-induced lung hemorrhage in rats. Echocardiography 2004; 21: 417 –422.
dc.identifier.citedreferenceMiller DL, Dou C. Contrast-aided diagnostic ultrasound does not enhance lung metastasis in a mouse melanoma tumor model. J Ultrasound Med 2005; 24: 349 –354.
dc.identifier.citedreferenceDalecki D, Rota C, Raeman CH, Child SZ. Premature cardiac contractions produced by ultrasound and microbubble contrast agents in mice. Acoust Res Lett Online 2005; 6: 221 –226.
dc.identifier.citedreferenceShigeta K, Itoh K, Ookawara S, Taniguchi N, Omoto K. Endothelial cell injury and platelet aggregation induced by contrast ultrasonography in the rat hepatic sinusoid. J Ultrasound Med 2004; 23: 29 –36.
dc.identifier.citedreferenceRaeman CH, Dalecki D, Child SZ, Meltzer RS, Carstensen EL. Albunex does not increase the sensitivity of the lung to pulsed ultrasound. Echocardiography 1997; 14: 553 –558.
dc.identifier.citedreferenceMiller DL, Gies RA. Consequences of lithotripter shockwave interaction with gas body contrast agent in mouse intestine. J Urol 1999; 162: 606 –609.
dc.identifier.citedreferenceHynynen K, McDannold N, Martin H, Jolesz FA, Vykhodtseva N. The threshold for brain damage in rabbits induced by bursts of ultrasound in the presence of an ultrasound contrast agent (Optison). Ultrasound Med Biol 2003; 29: 473 –481.
dc.identifier.citedreferenceHwang JH, Brayman AA, Reidy MA, Matula TJ, Kimmey MB, Crum LA. Vascular effects induced by combined 1-MHz ultrasound and microbubble contrast agent treatments in vivo. Ultrasound Med Biol 2005; 31: 553 –564.
dc.identifier.citedreferenceDalecki D, Raeman CH, Child SZ, et al. Hemolysis in vivo from exposure to pulsed ultrasound. Ultrasound Med Biol 1997; 23: 307 –313.
dc.identifier.citedreferenceDalecki D, Child SZ, Raeman CH, Xing C, Gracewski S, Carstensen EL. Bioeffects of positive and negative acoustic pressures in mice infused with microbubbles. Ultrasound Med Biol 2000; 26: 1327 –1332.
dc.identifier.citedreferenceZachary JF, Hartleben SA, Frizzell LA, O’Brien WD Jr. Arrhythmias in rat hearts exposed to pulsed ultrasound after intravenous injection of a contrast agent. J Ultrasound Med 2002; 21: 1347 –1356.
dc.identifier.citedreferencePrice RJ, Skyba DM, Kaul S, Skalak TC. Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 1998; 98: 1264 –1267.
dc.identifier.citedreferencePislaru SV, Pislaru C, Kinnick RR, et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities. Eur Heart J 2003; 24: 1690 –1698.
dc.identifier.citedreferenceChristiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med Biol 2003; 29: 1759 –1767.
dc.identifier.citedreferenceShohet RV, Chen S, Zhou Y, et al. Echocardiographic destruction of albumin microbubbles directs gene delivery to the myocardium. Circulation 2000; 101: 2554 –2556.
dc.identifier.citedreferenceVannan M, McCreery T, Li P, et al. Ultrasound-mediated transfection of canine myocardium by intravenous administration of cationic microbubble-linked plasmid DNA. J Am Soc Echocardiogr 2002; 15: 214 –218.
dc.identifier.citedreferenceBekeredjian R, Chen S, Frenkel PA, Grayburn PA, Shohet RV. Ultrasound-targeted microbubble destruction can repeatedly direct highly specific plasmid expression to the heart. Circulation 2003; 108: 1022 –1026.
dc.identifier.citedreferenceChen S, Shohet RV, Bekeredjian R, Frenkel P, Grayburn PA. Optimization of ultrasound parameters for cardiac gene delivery of adenoviral or plasmid deoxyribonucleic acid by ultrasound-targeted microbubble destruction. J Am Coll Cardiol 2003; 42: 301 –308.
dc.identifier.citedreferenceZhigang W, Zhiyu L, Haitao R, et al. Ultrasound-mediated microbubble destruction enhances VEGF gene delivery to the infarcted myocardium in rats. Clin Imaging 2004; 28: 395 –398.
dc.identifier.citedreferenceKondo I, Ohmori K, Oshita A, et al. Treatment of acute myocardial infarction by hepatocyte growth factor gene transfer: the first demonstration of myocardial transfer of a “functional” gene using ultrasonic microbubble destruction. J Am Coll Cardiol 2004; 44: 644 –653.
dc.identifier.citedreferenceAmerican Institute of Ultrasound in Medicine. Bioeffects of Diagnostic Ultrasound with Gas Body Contrast Agents. Laurel, MD: American Institute of Ultrasound in Medicine; 2002. Available at: http://www.aium.org/publications/statements/_statementSelected.asp?statement=25.
dc.identifier.citedreferenceDeng CX, Lizzi FL. A review of physical phenomena associated with ultrasonic contrast agents and illustrative clinical applications. Ultrasound Med Biol 2002; 28: 277 –285.
dc.identifier.citedreferenceFrinking PJ, Bouakaz A, Kirkhorn J, Ten Cate FJ, de Jong N. Ultrasound contrast imaging: current and new potential methods. Ultrasound Med Biol 2000; 26: 965 –975.
dc.identifier.citedreferenceMulvagh SL, DeMaria AN, Feinstein SB, et al. Contrast echocardiography: current and future applications. J Am Soc Echocardiogr 2000; 13: 331 –342.
dc.identifier.citedreferenceDawson D, Vincent MA, Barrett EJ, et al. Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol Endocrinol Metab 2002; 282: E714 –720.
dc.identifier.citedreferenceAmerican Institute of Ultrasound in Medicine. Mechanical Bioeffects from Diagnostic Ultrasound: AIUM Consensus Statements. J Ultrasound Med 2000; 19: 67 –168.
dc.identifier.citedreferenceNational Council on Radiation Protection and Measurements. Exposure Criteria for Medical Diagnostic Ultrasound, II: Criteria Based on All Known Mechanisms. Bethesda, MD: National Council on Radiation Protection and Measurements; 2002. Report 140.
dc.identifier.citedreferenceApfel RE. Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br J Cancer 1982; 45 (suppl): 140 –146.
dc.identifier.citedreferenceFlynn HG. Generation of transient cavitation in liquids by microsecond pulses of ultrasound. J Acoust Soc Am 1982; 72: 1926 –1932.
dc.identifier.citedreferenceApfel RE, Holland CK. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med Biol 1991; 17: 179 –185.
dc.identifier.citedreferenceAmerican Institute of Ultrasound in Medicine, National Electrical Manufacturers Association. Acoustic Output Measurement and Labeling Standard for Diagnostic Ultrasound Equipment. Rockville, MD: American Institute of Ultrasound in Medicine; Rosslyn, VA: National Electrical Manufacturers Association; 1992.
dc.identifier.citedreferenceHolland CK, Apfel RE. Thresholds for transient cavitation produced by pulsed ultrasound in a controlled nuclei environment. J Acoust Soc Am 1990; 88: 2059 –2069.
dc.identifier.citedreferencePrice RJ, Kaul S. Contrast ultrasound targeted drug and gene delivery: an update on a new therapeutic modality. J Cardiovasc Pharmacol Ther 2002; 7: 171 –180.
dc.identifier.citedreferenceWorld Federation for Ultrasound in Medicine and Biology. WFUMB symposium on the safe use of echo-contrast agents. Ultrasound Med Biol 2007; 33: 171 –234.
dc.identifier.citedreferenceVan Liew HD, Burkard ME. Bubbles in circulating blood: stabilization and simulations of cyclic changes of size and content J Appl Physiol 1995; 79: 1379 –1385.
dc.identifier.citedreferenceVan Liew HD, Burkard ME. Behavior of bubbles of slowly permeating gas used for ultrasonic imaging contrast. Invest Radiol 1995; 30: 315 –321.
dc.identifier.citedreferenceMeza M, Greener Y, Hunt R, et al. Myocardial contrast echocardiography: reliable, safe, and efficacious myocardial perfusion assessment after intravenous injections of a new echocardiographic contrast agent. Am Heart J 1996; 132: 871 –881.
dc.identifier.citedreferenceDittrich HC, Kuvelas T, Dadd K, et al. Safety and efficacy of the ultrasound contrast agent FS069 in normal humans: results of a phase one trial. Circulation 1995; 92: I–464.
dc.identifier.citedreferenceKitzman DW, Goldman ME, Gillam LD, Cohen JL Aurimemma GP, Gottdiener JS. Efficacy and safety of the novel ultrasound contrast agent perflutren (Definity) in patients with suboptimal baseline left ventricular echocardiographic images. Am J Cardiol 2000; 86: 669 –674.
dc.identifier.citedreferenceMetzger-Rose C, Wright WH, Baker MR, et al. Effects of phospholipid-coated microbubbles (MRX-115) on the detection of testicular ischemia in dogs. Acad Radiol 1996; 3: S314 –S316.
dc.identifier.citedreferenceLindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of Definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 2002; 15: 396 –403.
dc.identifier.citedreferenceMulvagh SL, Foley DA, Aeschbacher BC, Klarich KK, Seward JE. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: visualization of coronary arteries and measurement to coronary blood flow. J Am Coll Cardiol 1996; 27: 1519 –1525.
dc.identifier.citedreferenceSchneider M, Arditi M, Barrau MB, et al. BR1: a new ultrasonographic contrast agent based on sulfur hexafluoride-filled microbubbles. Invest Radiol 1995; 30: 451 –457.
dc.identifier.citedreferenceEuropean Medicines Agency. Evaluation of Medicines for Human Use. Public Statement on SonoVue (Sulphur Hexafluoride): New Contraindication in Patients With Heart Disease—Restriction of Use to Non-Cardiac Imaging. London, England: European Medicines Agency; 2004. Publication EMEA/CPMP/212/04:2004.
dc.identifier.citedreferenceLeong-Poi H, Song J, Rim SJ, Christiansen J, Kaul S, Lindner JR. Influence of microbubble shell properties on ultrasound signal: implications for low-power perfusion imaging. J Am Soc Echocardiogr 2002; 15: 1269 –1276.
dc.identifier.citedreferenceMasugata H, Cotter B, Peters B, Ohmori K, Mizushige K, DeMaria AN. Assessment of coronary stenosis severity and transmural perfusion gradient by myocardial contrast echocardiography: comparison of grayscale and B-mode with power Doppler imaging. Circulation 2000; 102: 1427 –1433.
dc.identifier.citedreferenceChurch CC. The acoustical response of AI-700 in vitro [abstract]. J Am Soc Echocardiogr 2000; 13: 457.
dc.identifier.citedreferenceStraub JA, Chickering DE, Church CC, Shah B, Hanlon T, Bernstein H. Porous PLGA microparticles: AI-700, an intravenously administered ultrasound contrast agent for use in echocardiography. J Control Release 2005; 108: 21 –32.
dc.identifier.citedreferenceLindner JR, Wei K. Contrast echocardiography. Curr Probl Cardiol 2002; 27: 454 –519.
dc.identifier.citedreferenceGoldberg BB, Raichlen JS, Forsberg F (eds). Ultrasound Contrast Agents. 2nd ed. London, England: Martin Dunitz Ltd; 2001.
dc.identifier.citedreferenceLeen E, Moug SJ, Horgan P. Potential impact and utilization of ultrasound contrast media. Eur Radiol 2004; 14 (suppl 8): 16 –24.
dc.identifier.citedreferenceAbramowicz JS. Ultrasound contrast media: has the time come in obstetrics and gynecology? J Ultrasound Med 2005; 24: 517 –531.
dc.identifier.citedreferenceBlomley MJ, Cooke JC, Unger EC, Monaghan MJ, Cosgrove DO. Microbubble contrast agents: a new era in ultrasound. BMJ 2001; 322: 1222 –1225.
dc.identifier.citedreferenceDarge K, Riedmiller H. Current status of vesicoureteral reflux diagnosis. World J Urol 2004; 22: 88 –95.
dc.identifier.citedreferenceStrandell A, Bourne T, Bergh C, Granberg S, Asztely M, Thorburn J. The assessment of endometrial pathology and tubal patency: a comparison between the use of ultrasonography and X-ray hysterosalpingography for the investigation of infertility patients. Ultrasound Obstet Gynecol 1999; 14: 200 –204.
dc.identifier.citedreferenceJakobsen JA, Correas JM. Ultrasound contrast agents and their use in urogenital radiology: status and prospects. Eur Radiol 2001; 11: 2082 –2091.
dc.identifier.citedreferenceBurns PN. Instrumentation for contrast echocardiography. Echocardiography 2002; 19: 241 –258.
dc.identifier.citedreferenceAverkiou M, Powers J, Skyba D, Bruce M, Jensen S. Ultrasound contrast imaging research. Ultrasound Q 2003; 19: 27 –37.
dc.identifier.citedreferenceAlbrecht T, Blomley M, Bolondi L, et al. Guidelines for the use of contrast agents in ultrasound: January 2004. Ultraschall Med 2004; 25: 249 –256.
dc.identifier.citedreferencePorter TR, Xie F, Kricsfeld D, Armbruster RW. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin. J Am Coll Cardiol 1996; 27: 1497 –1501.
dc.identifier.citedreferenceKuersten B, Murthy TH, Li P, et al. Ultraharmonic myocardial contrast imaging: in vivo experimental and clinical data from a novel technique. J Am Soc Echocardiogr 2001; 14: 910 –916.
dc.identifier.citedreferenceWei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998; 97: 473 –483.
dc.identifier.citedreferencede Jong N, Cornet R, Lancee CT. Higher harmonics of vibrating gas-filled microspheres, part one: simulations. Ultrasonics 1994; 32: 447 –453.
dc.identifier.citedreferenceChurch CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 1995; 97: 1510 –1521.
dc.identifier.citedreferenceMarsh JN, Hughes MS, Hall CS, et al. Broadband through-transmission signal loss measurements of Albunex suspensions at concentrations approaching in vivo doses. J Acoust Soc Am 1998; 104: 1654 –1666.
dc.identifier.citedreferenceStride E, Saffari N. Theoretical and experimental investigation of the behaviour of ultrasound contrast agent particles in whole blood. Ultrasound Med Biol 2004; 30: 1495 –1509.
dc.identifier.citedreferenceO’Brien WD Jr, Deng CX, Harris GR, et al. The risk of exposure to diagnostic ultrasound in postnatal subjects: thermal effects. J Ultrasound Med 2008; 27: 517 –535.
dc.identifier.citedreferenceAbramowicz JS, Barnett S, Duck F, Edmonds P, Hynynen K, Ziskin M. Fetal thermal effects of diagnostic ultrasound. J Ultrasound Med 2008; 27: 541 –559.
dc.identifier.citedreferenceChavrier F, Chapelon JY. Modeling of high-intensity focused ultrasound-induced lesions in the presence of cavitation bubbles. J Acoust Soc Am 2000; 108: 432 –440.
dc.identifier.citedreferenceEdson PL. The Role of Acoustic Cavitation in Enhanced Ultrasound-Induced Heating in a Tissue-Mimicking Phantom [dissertation]. Boston, MA: Boston University; 2001.
dc.identifier.citedreferenceProsperetti A. The thermal behavior of oscillating gas-bubbles. J Fluid Mech 1991; 222: 587 –616.
dc.identifier.citedreferenceHolt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2001; 27: 1399 –1412.
dc.identifier.citedreferenceHilgenfeldt S, Lohse D, Zomack M. Response of bubbles to diagnostic ultrasound: a unifying theoretical approach. Eur Phys J B 1998; 4: 247 –255.
dc.identifier.citedreferenceHilgenfeldt S, Lohse D, Zomack M. Sound scattering and localized heat deposition of pulse-driven microbubbles. J Acoust Soc Am 2000; 107: 3530 –3539.
dc.identifier.citedreferenceStride E, Saffari N. The potential for thermal damage posed by microbubble ultrasound contrast agents. Ultrasonics 2004; 42: 907 –913.
dc.identifier.citedreferenceFujishiro S, Mitsumori M, Nishimura Y, et al. Increased heating efficiency of hyperthermia using an ultrasound contrast agent: a phantom study. Int J Hyperthermia 1998; 14: 495 –502.
dc.identifier.citedreferenceWu J. Temperature rise generated by ultrasound in the presence of contrast agent. Ultrasound Med Biol 1998; 24: 267 –274.
dc.identifier.citedreferenceSokka SD, King R, Kynynen K. MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003; 48: 223 –241.
dc.identifier.citedreferenceStride E, Saffari N. On the destruction of microbubble ultrasound contrast agents, Ultrasound Med Biol 2003; 29: 563 –573.
dc.identifier.citedreferenceMiller DL, Dou C. Theoretical gas body pulsation in relation to empirical gas body destabilization and to cell membrane damage thresholds. J Acoust Soc Am 2004; 116: 3742 –3749.
dc.identifier.citedreferenceChomas JE, Dayton P, May D, Ferrara K. Threshold of fragmentation for ultrasonic contrast agents. J Biomed Opt 2001; 6: 141 –150.
dc.identifier.citedreferenceChomas JE, Dayton P, Allen J, Morgan K, Ferrara K. Mechanisms of contrast agent destruction. IEEE Trans Ultrason Ferroelectr Freq Control 2001; 48: 232 –248.
dc.identifier.citedreferenceCarstensen EL, Gracewski S, Dalecki D. The search for cavitation in vivo. Ultrasound Med Biol 2000; 26: 1377 –1385.
dc.identifier.citedreferencePorter TR, Everbach C, Kricsfeld D, Xie F. Myocardial cavitational activity during continuous infusion and bolus intravenous injections of perfluorocarbon-containing microbubbles. J Am Soc Echocardiogr 2001; 14: 618 –625.
dc.identifier.citedreferenceMiller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol 1996; 22: 1131 –1154.
dc.identifier.citedreferenceStratmeyer M, Greenleaf J, Dalecki D, Salvesen, K. Fetal ultrasound: mechanical effects. J Ultrasound Med 2008; 27: 597 –605.
dc.identifier.citedreferenceChurch CC, Carstensen EL, Nyborg WL, Carson PL, Frizzell LA, Bailey MR. The risk of exposure to diagnostic ultrasound in postnatal subjects: nonthermal mechanisms. J Ultrasound Med 2008; 27: 565 –592.
dc.identifier.citedreferenceRooney JA. Shear as a mechanism for sonically induced biological effects. J Acoust Soc Am 1972; 52: 1718 –1724.
dc.identifier.citedreferenceNyborg WL. Physical Mechanisms for Biological Effects of Ultrasound. Rockville, MD: Bureau of Radiological Health; 1997.
dc.identifier.citedreferenceMiller DL. A review of the ultrasonic bioeffects of microsonation, gas-body activation, and related cavitation-like phenomena. Ultrasound Med Biol 1987; 13: 443 –470.
dc.identifier.citedreferenceMiller DL. Frequency relationships for ultrasonic activation of free microbubbles, encapsulated microbubbles, and gas-filled micropores. J Acoust Soc Am 1998; 104: 2498 –2505.
dc.identifier.citedreferenceWu, J Theoretical study on shear stress generated by microstreaming surrounding contrast agents attached to living cells. Ultrasound Med Biol 2002; 28: 125 –129.
dc.identifier.citedreferenceMiller DL, Dou C. Membrane damage thresholds for pulsed or continuous ultrasound in phagocytic cells loaded with contrast agent gas bodies. Ultrasound Med Biol 2004; 30: 405 –411.
dc.identifier.citedreferenceMiller DL, Dou C. Membrane damage thresholds for 1- to 10-MHz pulsed ultrasound exposure of phagocytic cells loaded with contrast agent gas bodies in vitro. Ultrasound Med Biol 2004; 30: 973 –977.
dc.identifier.citedreferenceMiller DL, Gies RA, Chrisler WB. Ultrasonically induced hemolysis at high cell and gas body concentrations in a thin-disc exposure chamber. Ultrasound Med Biol 1997; 23: 625 –633.
dc.identifier.citedreferenceMiller DL, Gies RA. Enhancement of ultrasonically-induced hemolysis by perfluorocarbon-based compared to air-based echo-contrast agents. Ultrasound Med Biol 1998; 24: 285 –292.
dc.identifier.citedreferenceBrayman AA, Lizotte LM, Miller MW. Erosion of artificial endothelia in vitro by pulsed ultrasound: acoustic pressure, frequency, membrane orientation and microbubble contrast agent dependence. Ultrasound Med Biol 1999; 25: 1305 –1320.
dc.identifier.citedreferenceMiller DL, Quddus J. Lysis and sonoporation of epidermoid and phagocytic monolayer cells by diagnostic ultrasound activation of contrast agent gas bodies. Ultrasound Med Biol 2001; 27: 1107 –1113.
dc.identifier.citedreferenceEverbach EC, Makin IR, Azadniv M, Meltzer RS. Correlation of ultrasound-induced hemolysis with cavitation detector output in vitro. Ultrasound Med Biol 1997; 23: 619 –624.
dc.identifier.citedreferenceMiller MW, Everbach EC, Cox C, Knapp RR, Brayman AA, Sherman TA. A comparison of the hemolytic potential of Optison and Albunex in whole human blood in vitro: acoustic pressure, ultrasound frequency, donor and passive cavitation detection considerations. Ultrasound Med Biol 2001; 27: 709 –721.
dc.identifier.citedreferenceChen WS, Brayman AA, Matula TJ, Crum LA, Miller MW. The pulse length dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol 2003; 29: 739 –746.
dc.identifier.citedreferenceChen W-S, Brayman AA, Matula TJ, Crum LA. Inertial cavitation dose and hemolysis produced in vitro with or without Optison. Ultrasound Med Biol 2003; 29: 725 –737.
dc.identifier.citedreferenceMiller MW, Everbach EC, Miller WM, Battaglia LF. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro, 2: medium dissolved gas (pO2) content. Ultrasound Med Biol 2003; 29: 93 –102.
dc.identifier.citedreferenceBrayman AA, Strickler PL, Luan H, et al. Hemolysis of 40% hematocrit, Albunex-supplemented human erythrocytes by pulsed ultrasound: frequency, acoustic pressure and pulse length dependence. Ultrasound Med Biol 1997; 23: 1237 –1250.
dc.identifier.citedreferenceLindner JR, Dayton PA, Coggins MP, et al. Noninvasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Biophys J 2000; 80: 1547 –1556.
dc.identifier.citedreferenceDayton PA, Chomas JE, Lum AFH, et al. Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. Biophys J 2001; 80: 1587 –1586.
dc.identifier.citedreferenceShigeta K, Taniguchi N, Omoto K, et al. In vitro platelet activation by an echo contrast agent. J Ultrasound Med 2003; 22: 365 –373.
dc.identifier.citedreferenceWard M, Wu J, Chiu JF. Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol 2000; 26: 1169 –1175.
dc.identifier.citedreferenceMiller DL, Bao S. The relationship of scattered subharmonic, 3.3-MHz fundamental and second harmonic signals to damage of monolayer cells by ultrasonically activated Albunex. J Acoust Soc Am 1998; 103: 1183 –1189.
dc.identifier.citedreferenceDayton P, Klibanov A, Brandenburger G, Ferrara K. Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles. Ultrasound Med Biol 1999; 25: 1195 –1201.
dc.identifier.citedreferenceMiller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol 2000; 26: 661 –667.
dc.identifier.citedreferenceMiller DL, Dou C, Song J. DNA transfer and cell killing in epidermoid cells by diagnostic ultrasound activation of contrast agent gas bodies in vitro. Ultrasound Med Biol 2003; 29: 601 –607.
dc.identifier.citedreferenceKudo N, Miyaoka T, Okada K, Niwa K. Study on mechanism of cell damage caused by microbubbles exposed to ultrasound. Proc IEEE Ultrason Symp 2002; 1351–1354.
dc.identifier.citedreferenceSkyba DM, Price RJ, Linka AZ, Skalak TC, Kaul S. Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue. Circulation 1998; 98: 290 –293.
dc.identifier.citedreferenceMiller DL, Quddus J. Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice. Proc Natl Acad Sci USA 2000; 97: 10179 –10184.
dc.identifier.citedreferenceAy T, Havauz X, Van Camp G, et al. Destruction of contrast microbubbles by ultrasound effects on myocardial function, coronary perfusion pressure and microvascular integrity. Circulation 2001; 104: 461 –466.
dc.identifier.citedreferenceChen S, Kroll MH, Shohet RV, Frenkel P, Mayer SA, Grayburn PA. Bioeffects of myocardial contrast microbubble destruction by echocardiography. Echocardiography 2002; 19: 495 –500.
dc.identifier.citedreferenceBorges AC, Walde T, Reibis RK, et al. Does contrast echocardiography with Optison induce myocardial necrosis in humans? J Am Soc Echocardiogr 2002; 15: 1080 –1086.
dc.identifier.citedreferenceRaisinghani A, Wei KS, Crouse L, et al. Myocardial contrast echocardiography (MCE) with triggered ultrasound does not cause premature ventricular complexes: evidence from PB127 MCE studies. J Am Soc Echocardiogr 2003; 16: 1037 –1042.
dc.identifier.citedreferenceLi P, Cao LQ, Dou CY, Armstrong WR, Miller DL. Impact of myocardial contrast echocardiography on vascular permeability: an in vivo dose response study of delivery mode, ultrasound power and contrast dose. Ultrasound Med Biol 2003; 29: 1341 –1349.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.