Show simple item record

Evolution‐informed modeling improves outcome prediction for cancers

dc.contributor.authorLiu, Li
dc.contributor.authorChang, Yung
dc.contributor.authorYang, Tao
dc.contributor.authorNoren, David P
dc.contributor.authorLong, Byron
dc.contributor.authorKornblau, Steven
dc.contributor.authorQutub, Amina
dc.contributor.authorYe, Jieping
dc.date.accessioned2017-01-10T19:04:29Z
dc.date.available2018-03-01T16:43:50Zen
dc.date.issued2017-01
dc.identifier.citationLiu, Li; Chang, Yung; Yang, Tao; Noren, David P; Long, Byron; Kornblau, Steven; Qutub, Amina; Ye, Jieping (2017). "Evolution‐informed modeling improves outcome prediction for cancers." Evolutionary Applications 10(1): 68-76.
dc.identifier.issn1752-4571
dc.identifier.issn1752-4571
dc.identifier.urihttps://hdl.handle.net/2027.42/135247
dc.description.abstractDespite wide applications of high‐throughput biotechnologies in cancer research, many biomarkers discovered by exploring large‐scale omics data do not provide satisfactory performance when used to predict cancer treatment outcomes. This problem is partly due to the overlooking of functional implications of molecular markers. Here, we present a novel computational method that uses evolutionary conservation as prior knowledge to discover bona fide biomarkers. Evolutionary selection at the molecular level is nature’s test on functional consequences of genetic elements. By prioritizing genes that show significant statistical association and high functional impact, our new method reduces the chances of including spurious markers in the predictive model. When applied to predicting therapeutic responses for patients with acute myeloid leukemia and to predicting metastasis for patients with prostate cancers, the new method gave rise to evolution‐informed models that enjoyed low complexity and high accuracy. The identified genetic markers also have significant implications in tumor progression and embrace potential drug targets. Because evolutionary conservation can be estimated as a gene‐specific, position‐specific, or allele‐specific parameter on the nucleotide level and on the protein level, this new method can be extended to apply to miscellaneous “omics” data to accelerate biomarker discoveries.
dc.publisherWiley Periodicals, Inc.
dc.publisherWorld Scientific
dc.subject.othertranscriptomics
dc.subject.otherevolutionary medicine
dc.subject.othergenomics/proteomics
dc.subject.othermolecular evolution
dc.titleEvolution‐informed modeling improves outcome prediction for cancers
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135247/1/eva12417_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135247/2/eva12417.pdf
dc.identifier.doi10.1111/eva.12417
dc.identifier.sourceEvolutionary Applications
dc.identifier.citedreferenceLudwig, J. A., & Weinstein, J. N. ( 2005 ). Biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer, 5, 845 – 856.
dc.identifier.citedreferenceHill, S. M., Neve, R. M., Bayani, N., Kuo, W. L., Ziyad, S., Spellman, P. T., … Mukherjee, S. ( 2012 ). Integrating biological knowledge into variable selection: An empirical Bayes approach with an application in cancer biology. BMC Bioinformatics, 13, 94. PMC3503557.
dc.identifier.citedreferenceJabbour, E., Ottmann, O. G., Deininger, M., & Hochhaus, A. ( 2014 ). Targeting the phosphoinositide 3‐kinase pathway in hematologic malignancies. Haematologica, 99, 7 – 18.
dc.identifier.citedreferenceKimura, M. ( 1983 ). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.
dc.identifier.citedreferenceKristensen, V. N., Lingjaerde, O. C., Russnes, H. G., Vollan, H. K., Frigessi, A., & Borresen‐Dale, A. L. ( 2014 ). Principles and methods of integrative genomic analyses in cancer. Nature Reviews Cancer, 14, 299 – 313.
dc.identifier.citedreferenceKulasingam, V., Pavlou, M. P., & Diamandis, E. P. ( 2010 ). Integrating high‐throughput technologies in the quest for effective biomarkers for ovarian cancer. Nature Reviews Cancer, 10, 371 – 378.
dc.identifier.citedreferenceKumar, S., Dudley, J. T., Filipski, A., & Liu, L. ( 2011 ). Phylomedicine: An evolutionary telescope to explore and diagnose the universe of disease mutations. Trends in Genetics, 27, 377 – 386.
dc.identifier.citedreferenceKumar, S., Sanderford, M., Gray, V. E., Ye, J., & Liu, L. ( 2012 ). Evolutionary diagnosis method for variants in personal exomes. Nature Methods, 9, 855 – 856.
dc.identifier.citedreferenceKwon, S. M., Cho, H., Choi, J. H., Jee, B. A., Jo, Y., & Woo, H. G. ( 2012 ). Perspectives of integrative cancer genomics in next generation sequencing era. Genomics & Informatics, 10, 69 – 73.
dc.identifier.citedreferenceLandau, D. A., Carter, S. L., Getz, G., & Wu, C. J. ( 2014 ). Clonal evolution in hematological malignancies and therapeutic implications. Leukemia, 28, 34 – 43.
dc.identifier.citedreferenceLiao, B. Y., & Zhang, J. ( 2006 ). Evolutionary conservation of expression profiles between human and mouse orthologous genes. Molecular Biology and Evolution, 23, 530 – 540.
dc.identifier.citedreferenceLiu, J., Ji, S., & Ye, J. ( 2009 ). SLEP: Sparse learning with efficient projections. Tempe, AZ: Arizona State University.
dc.identifier.citedreferenceLiu, Z., Zhang, Y., Niu, Y., Li, K., Liu, X., Chen, H., & Gao, C. ( 2014 ). A systematic review and meta‐analysis of diagnostic and prognostic serum biomarkers of colorectal cancer. PLoS One, 9, e103910.
dc.identifier.citedreferenceMassuti, B., Sanchez, J. M., Hernando‐Trancho, F., Karachaliou, N., & Rosell, R. ( 2013 ). Are we ready to use biomarkers for staging, prognosis and treatment selection in early‐stage non‐small‐cell lung cancer? Translational Lung Cancer Research, 2, 208 – 221.
dc.identifier.citedreferenceMcDermott, J. E., Wang, J., Mitchell, H., Webb‐Robertson, B. J., Hafen, R., Ramey, J., & Rodland, K. D. ( 2013 ). Challenges in biomarker discovery: Combining expert insights with statistical analysis of complex omics data. Expert Opinion on Medical Diagnostics, 7, 37 – 51.
dc.identifier.citedreferenceMi, H., Poudel, S., Muruganujan, A., Casagrande, J. T., & Thomas, P. D. ( 2016 ). PANTHER version 10: Expanded protein families and functions, and analysis tools. Nucleic Acids Research, 44, D336 – 342.
dc.identifier.citedreferenceMoon, J. H., Sohn, S. K., Lee, M. H., Jang, J. H., Kim, K., Jung, C. W., & Kim, D. H. ( 2010 ). BCL2 gene polymorphism could predict the treatment outcomes in acute myeloid leukemia patients. Leukemia Research, 34, 166 – 172.
dc.identifier.citedreferenceNakagawa, T., Kollmeyer, T. M., Morlan, B. W., Anderson, S. K., Bergstralh, E. J., Davis, B. J., … Jenkins, R. B. ( 2008 ). A tissue biomarker panel predicting systemic progression after PSA recurrence post‐definitive prostate cancer therapy. PLoS One, 3, e2318.
dc.identifier.citedreferenceNoren, D. P., Long, B., Norel, R., Rhrissorrakrai, K., Hess, K., Hu, C. W., … Amina, A. Q. ( 2016 ). A crowd sourcing approach to developing and assessing prediction algorithms for AML prognosis. PLoS Computational Biology, 12 ( 6 ), e1004890.
dc.identifier.citedreferencePei, J., & Grishin, N. V. ( 2001 ). AL2CO: Calculation of positional conservation in a protein sequence alignment. Bioinformatics, 17, 700 – 712.
dc.identifier.citedreferencePodder, S., & Ghosh, T. C. ( 2010 ). Exploring the differences in evolutionary rates between monogenic and polygenic disease genes in human. Molecular Biology and Evolution, 27, 934 – 941.
dc.identifier.citedreferenceSham, P. C., & Purcell, S. M. ( 2014 ). Statistical power and significance testing in large‐scale genetic studies. Nature Reviews Genetics, 15, 335 – 346.
dc.identifier.citedreferenceShilo, B. Z., & Weinberg, R. A. ( 1981 ). DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 78, 6789 – 6792.
dc.identifier.citedreferenceThiede, C., Koch, S., Creutzig, E., Steudel, C., Illmer, T., Schaich, M., & Ehninger, G. ( 2006 ). Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood, 107, 4011 – 4020.
dc.identifier.citedreferenceWalter, R. B., Othus, M., Burnett, A. K., Lowenberg, B., Kantarjian, H. M., Ossenkoppele, G. J., Hills, R. K., Ravandi, F., Pabst, T., Evans, A., et al. ( 2015 ). Resistance prediction in AML: Analysis of 4601 patients from MRC/NCRI, HOVON/SAKK, SWOG and MD Anderson Cancer Center. Leukemia, 29, 312 – 320.
dc.identifier.citedreferenceWalter, R. B., Othus, M., Paietta, E. M., Racevskis, J., Fernandez, H. F., Lee, J. W., Sun, Z., Tallman, M. S., Patel, J., Gonen, M., et al. ( 2015 ). Effect of genetic profiling on prediction of therapeutic resistance and survival in adult acute myeloid leukemia. Leukemia, 29, 2104 – 2107.
dc.identifier.citedreferenceZhu, Y. F., Yu, B. H., Li, D. L., Ke, H. L., Guo, X. Z., & Xiao, X. Y. ( 2012 ). PI3K expression and PIK3CA mutations are related to colorectal cancer metastases. World Journal of Gastroenterology, 18, 3745 – 3751.
dc.identifier.citedreferenceBallard‐Barbash, R., Friedenreich, C. M., Courneya, K. S., Siddiqi, S. M., McTiernan, A., & Alfano, C. M. ( 2012 ). Physical activity, biomarkers, and disease outcomes in cancer survivors: A systematic review. Journal of the National Cancer Institute, 104, 815 – 840.
dc.identifier.citedreferenceBanerji, V., Frumm, S. M., Ross, K. N., Li, L. S., Schinzel, A. C., Hahn, C. K., … Stegmaier, K. ( 2012 ). The intersection of genetic and chemical genomic screens identifies GSK‐3alpha as a target in human acute myeloid leukemia. The Journal of Clinical Investigation, 122, 935 – 947.
dc.identifier.citedreferenceBerger, B., Peng, J., & Singh, M. ( 2013 ). Computational solutions for omics data. Nature Reviews Genetics, 14, 333 – 346.
dc.identifier.citedreferenceBrooks, J. D. ( 2012 ). Translational genomics: The challenge of developing cancer biomarkers. Genome Research, 22, 183 – 187.
dc.identifier.citedreferenceBurrell, R. A., & Swanton, C. ( 2014 ). Tumour heterogeneity and the evolution of polyclonal drug resistance. Molecular Oncology, 8, 1095 – 1111.
dc.identifier.citedreferenceCawley, G. C. T., & Nicola, L. C. ( 2010 ). On over‐fitting in model selection and subsequent selection bias in performance evaluation. Journal of Machine Learning Research, 11, 2079 – 2107.
dc.identifier.citedreferenceChen, L., Xuan, J., Wang, C., Wang, Y., Shih Ie, M., Wang, T. L., … Hoffman, E. P. ( 2009 ). Biomarker identification by knowledge‐driven multilevel ICA and motif analysis. International Journal of Data Mining and Bioinformatics, 3, 365 – 381.
dc.identifier.citedreferenceCilloni, D., Messa, F., Arruga, F., Defilippi, I., Gottardi, E., Fava, M., Carturan, S., Catalano, R., Bracco, E., Messa, E., et al. ( 2008 ). Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica, 93, 921 – 924.
dc.identifier.citedreferenceDing, L., Ley, T. J., Larson, D. E., Miller, C. A., Koboldt, D. C., Welch, J. S., Ritchey, J. K., Young, M. A., Lamprecht, T., McLellan, M. D., et al. ( 2012 ). Clonal evolution in relapsed acute myeloid leukaemia revealed by whole‐genome sequencing. Nature, 481, 506 – 510.
dc.identifier.citedreferenceDudley, J. T., Kim, Y., Liu, L., Markov, G. J., Gerold, K., Chen, R., … Kumar, S. ( 2012 ). Human genomic disease variants: A neutral evolutionary explanation. Genome Research, 22, 1383 – 1394.
dc.identifier.citedreferenceFalini, B., Nicoletti, I., Martelli, M. F., & Mecucci, C. ( 2007 ). Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): Biologic and clinical features. Blood, 109, 874 – 885.
dc.identifier.citedreferenceForbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., et al. ( 2015 ). COSMIC: Exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43, D805 – 811.
dc.identifier.citedreferenceFujita, P. A., Rhead, B., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Cline, M. S., … James, K. W. ( 2011 ). The UCSC genome browser database: Update 2011. Nucleic Acids Research, 39, D876 – 882.
dc.identifier.citedreferenceGarcía, V., Sánchez, J. S., Mollineda, R. A., Alejo, R., & Sotoca, J. M. ( 2007 ). The class imbalance problem in pattern classification and learning.
dc.identifier.citedreferenceGreaves, M., & Maley, C. C. ( 2012 ). Clonal evolution in cancer. Nature, 481, 306 – 313.
dc.identifier.citedreferenceGulley, M. L., Shea, T. C., & Fedoriw, Y. ( 2010 ). Genetic tests to evaluate prognosis and predict therapeutic response in acute myeloid leukemia. The Journal of Molecular Diagnostics, 12, 3 – 16.
dc.identifier.citedreferenceHedges, S. B., Dudley, J., & Kumar, S. ( 2006 ). Timetree: A public knowledge‐base of divergence times among organisms. Bioinformatics, 22, 2971 – 2972.
dc.identifier.citedreferenceHeng, H. H. ( 2015 ). Debating cancer: The paradox in cancer research. New Jersey: World Scientific.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.