Show simple item record

Adipose‐Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA‐31

dc.contributor.authorKang, Ting
dc.contributor.authorJones, Tia M.
dc.contributor.authorNaddell, Clayton
dc.contributor.authorBacanamwo, Methode
dc.contributor.authorCalvert, John W.
dc.contributor.authorThompson, Winston E.
dc.contributor.authorBond, Vincent C.
dc.contributor.authorChen, Y. Eugene
dc.contributor.authorLiu, Dong
dc.date.accessioned2017-01-10T19:06:00Z
dc.date.available2017-06-01T16:55:24Zen
dc.date.issued2016-04
dc.identifier.citationKang, Ting; Jones, Tia M.; Naddell, Clayton; Bacanamwo, Methode; Calvert, John W.; Thompson, Winston E.; Bond, Vincent C.; Chen, Y. Eugene; Liu, Dong (2016). "Adipose‐Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA‐31." STEM CELLS Translational Medicine 5(4): 440-450.
dc.identifier.issn2157-6564
dc.identifier.issn2157-6580
dc.identifier.urihttps://hdl.handle.net/2027.42/135340
dc.publisherAlphaMed Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAngiogenesis
dc.subject.otherMicrovesicle
dc.subject.otherEndothelial cell
dc.subject.otherAdipose stem cell
dc.subject.othermiRNA
dc.titleAdipose‐Derived Stem Cells Induce Angiogenesis via Microvesicle Transport of miRNA‐31
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.contributor.affiliationumCardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
dc.contributor.affiliationotherDivision of Cardiology, The First Affiliated Hospital, Nanchang University, Nanchang, People’s Republic of China
dc.contributor.affiliationotherDepartment of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
dc.contributor.affiliationotherDepartment of Physiology, Morehouse School of Medicine, Atlanta, Georgia, USA
dc.contributor.affiliationotherDivision of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
dc.contributor.affiliationotherCardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135340/1/sct3201654440.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/135340/2/Supplemental_Information.pdf
dc.identifier.doi10.5966/sctm.2015-0177
dc.identifier.sourceSTEM CELLS Translational Medicine
dc.identifier.citedreferenceChang SH, Hla T. Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends Mol Med. 2011; 17: 650 – 658.
dc.identifier.citedreferenceLiu CJ, Tsai MM, Hung PS. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma. Cancer Res. 2010; 70: 1635 – 1644.
dc.identifier.citedreferenceLiu D, Lin Y, Kang T. Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS One. 2012; 7: e34315.
dc.identifier.citedreferenceWei Y, Gong J, Thimmulappa RK. Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc Natl Acad Sci USA. 2013; 110: E3910 – E3918.
dc.identifier.citedreferenceJain S, Gabunia K, Kelemen SE. The anti-inflammatory cytokine interleukin 19 is expressed by and angiogenic for human endothelial cells. Arterioscler Thromb Vasc Biol. 2011; 31: 167 – 175.
dc.identifier.citedreferenceCastanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature. 2009; 457: 426 – 433.
dc.identifier.citedreferencePang X, Yi T, Yi Z. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res. 2009; 69: 518 – 525.
dc.identifier.citedreferenceBrill A, Dashevsky O, Rivo J. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005; 67: 30 – 38.
dc.identifier.citedreferenceWu YH, Hu TF, Chen YC. The manipulation of miRNA-gene regulatory networks by KSHV induces endothelial cell motility. Blood. 2011; 118: 2896 – 2905.
dc.identifier.citedreferenceBenndorf RA, Schwedhelm E, Gnann A. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: A potential link between oxidative stress and impaired angiogenesis. Circ Res. 2008; 103: 1037 – 1046.
dc.identifier.citedreferenceAlbig AR, Schiemann WP. Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis: RGS4 inhibits mitogen-activated protein kinases and vascular endothelial growth factor signaling. Mol Biol Cell. 2005; 16: 609 – 625.
dc.identifier.citedreferenceSuárez Y, Sessa WC. MicroRNAs as novel regulators of angiogenesis. Circ Res. 2009; 104: 442 – 454.
dc.identifier.citedreferenceWang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev. 2009; 19: 205 – 211.
dc.identifier.citedreferencePatella F, Rainaldi G. MicroRNAs mediate metabolic stresses and angiogenesis. Cell Mol Life Sci. 2012; 69: 1049 – 1065.
dc.identifier.citedreferenceThum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med. 2012; 4: 3 – 14.
dc.identifier.citedreferenceSuárez Y, Fernández-Hernando C, Yu J. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA. 2008; 105: 14082 – 14087.
dc.identifier.citedreferenceGreco S, De Simone M, Colussi C. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009; 23: 3335 – 3346.
dc.identifier.citedreferenceWang HW, Huang TS, Lo HH. Deficiency of the microRNA-31-microRNA-720 pathway in the plasma and endothelial progenitor cells from patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2014; 34: 857 – 869.
dc.identifier.citedreferenceHuang M, Nguyen P, Jia F. Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation. 2011; 124 ( suppl ): S46 – S54.
dc.identifier.citedreferenceAshton AW, Cheng Y, Helisch A. Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: Role of receptor internalization, thrombospondin-1, and alpha(v)beta3. Circ Res. 2004; 94: 735 – 742.
dc.identifier.citedreferenceLee SH, Kunz J, Lin SH. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res. 2007; 67: 11045 – 11053.
dc.identifier.citedreferenceCottonham CL, Kaneko S, Xu L. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells. J Biol Chem. 2010; 285: 35293 – 35302.
dc.identifier.citedreferenceZhang T, Wang Q, Zhao D. The oncogenetic role of microRNA-31 as a potential biomarker in oesophageal squamous cell carcinoma. Clin Sci (Lond). 2011; 121: 437 – 447.
dc.identifier.citedreferenceJaba IM, Zhuang ZW, Li N. NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. J Clin Invest. 2013; 123: 1718 – 1731.
dc.identifier.citedreferenceRoccaro AM, Sacco A, Maiso P. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 2013; 123: 1542 – 1555.
dc.identifier.citedreferenceCantaluppi V, Gatti S, Medica D. Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 2012; 82: 412 – 427.
dc.identifier.citedreferenceValastyan S, Reinhardt F, Benaich N. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis [retracted Cell. 2015 Apr 9;161(2):417]. Cell. 2009; 137: 1032 – 1046.
dc.identifier.citedreferenceKrek A, Grün D, Poy MN. Combinatorial microRNA target predictions. Nat Genet. 2005; 37: 495 – 500.
dc.identifier.citedreferenceTsai YH, Wu MF, Wu YH. The M type K15 protein of Kaposi’s sarcoma-associated herpesvirus regulates microRNA expression via its SH2-binding motif to induce cell migration and invasion. J Virol. 2009; 83: 622 – 632.
dc.identifier.citedreferenceBartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281 – 297.
dc.identifier.citedreferencePeng H, Kaplan N, Hamanaka RB. microRNA-31/factor-inhibiting hypoxia-inducible factor 1 nexus regulates keratinocyte differentiation. Proc Natl Acad Sci USA. 2012; 109: 14030 – 14034.
dc.identifier.citedreferenceLando D, Peet DJ, Gorman JJ. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002; 16: 1466 – 1471.
dc.identifier.citedreferenceRey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res. 2010; 86: 236 – 242.
dc.identifier.citedreferenceGupta R, Tongers J, Losordo DW. Human studies of angiogenic gene therapy. Circ Res. 2009; 105: 724 – 736.
dc.identifier.citedreferenceBeohar N, Rapp J, Pandya S. Rebuilding the damaged heart: The potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol. 2010; 56: 1287 – 1297.
dc.identifier.citedreferenceTongers J, Losordo DW, Landmesser U. Stem and progenitor cell-based therapy in ischaemic heart disease: Promise, uncertainties, and challenges. Eur Heart J. 2011; 32: 1197 – 1206.
dc.identifier.citedreferenceMadonna R, Geng YJ, De Caterina R. Adipose tissue-derived stem cells: Characterization and potential for cardiovascular repair. Arterioscler Thromb Vasc Biol. 2009; 29: 1723 – 1729.
dc.identifier.citedreferenceCai X, Lin Y, Hauschka PV. Adipose stem cells originate from perivascular cells. Biol Cell. 2011; 103: 435 – 447.
dc.identifier.citedreferenceSzöke K, Brinchmann JE. Concise review: Therapeutic potential of adipose tissue-derived angiogenic cells. Stem Cells Translational Medicine. 2012; 1: 658 – 667.
dc.identifier.citedreferenceCronk SM, Kelly-Goss MR, Ray HC. Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem Cells Translational Medicine. 2015; 4: 459 – 467.
dc.identifier.citedreferenceMiranville A, Heeschen C, Sengenès C. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation. 2004; 110: 349 – 355.
dc.identifier.citedreferenceNakagami H, Maeda K, Morishita R. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol. 2005; 25: 2542 – 2547.
dc.identifier.citedreferenceValina C, Pinkernell K, Song YH. Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J. 2007; 28: 2667 – 2677.
dc.identifier.citedreferenceCamussi G, Deregibus MC, Bruno S. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010; 78: 838 – 848.
dc.identifier.citedreferenceRaposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013; 200: 373 – 383.
dc.identifier.citedreferenceMartinez MC, Andriantsitohaina R. Microparticles in angiogenesis: Therapeutic potential. Circ Res. 2011; 109: 110 – 119.
dc.identifier.citedreferenceRatajczak MZ, Kucia M, Jadczyk T. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: Can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies?. Leukemia. 2012; 26: 1166 – 1173.
dc.identifier.citedreferenceLopatina T, Bruno S, Tetta C. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal. 2014; 12: 26.
dc.identifier.citedreferenceMarędziak M, Marycz K, Lewandowski D. Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)-a new approach in veterinary regenerative medicine. In Vitro Cell Dev Biol Anim. 2015; 51: 230 – 240.
dc.identifier.citedreferenceFarinazzo A, Turano E, Marconi S. Murine adipose-derived mesenchymal stromal cell vesicles: In vitro clues for neuroprotective and neuroregenerative approaches. Cytotherapy. 2015; 17: 571 – 578.
dc.identifier.citedreferenceLai RC, Chen TS, Lim SK. Mesenchymal stem cell exosome: A novel stem cell-based therapy for cardiovascular disease. Regen Med. 2011; 6: 481 – 492.
dc.identifier.citedreferenceRatajczak J, Miekus K, Kucia M. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: Evidence for horizontal transfer of mRNA and protein delivery. Leukemia. 2006; 20: 847 – 856.
dc.identifier.citedreferenceDeregibus MC, Cantaluppi V, Calogero R. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007; 110: 2440 – 2448.
dc.identifier.citedreferenceSkog J, Würdinger T, van Rijn S. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008; 10: 1470 – 1476.
dc.identifier.citedreferenceValadi H, Ekström K, Bossios A. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007; 9: 654 – 659.
dc.identifier.citedreferenceChen TS, Lai RC, Lee MM. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010; 38: 215 – 224.
dc.identifier.citedreferenceEirin A, Riester SM, Zhu XY. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 2014; 551: 55 – 64.
dc.identifier.citedreferencePark JE, Tan HS, Datta A. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics. 2010; 9: 1085 – 1099.
dc.identifier.citedreferenceLai RC, Arslan F, Lee MM. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res (Amst). 2010; 4: 214 – 222.
dc.identifier.citedreferenceSahoo S, Klychko E, Thorne T. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res. 2011; 109: 724 – 728.
dc.identifier.citedreferenceArslan F, Lai RC, Smeets MB. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res (Amst). 2013; 10: 301 – 312.
dc.identifier.citedreferenceTrajkovic K, Hsu C, Chiantia S. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319: 1244 – 1247.
dc.identifier.citedreferenceAli SA, Huang MB, Campbell PE. Genetic characterization of HIV type 1 Nef-induced vesicle secretion. AIDS Res Hum Retroviruses. 2010; 26: 173 – 192.
dc.identifier.citedreferenceLiu D, Hou J, Hu X. Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ Res. 2006; 98: 480 – 489.
dc.identifier.citedreferenceKang T, Lu W, Xu W. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013; 288: 34394 – 34402.
dc.identifier.citedreferenceSoo CY, Song Y, Zheng Y. Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells. Immunology. 2012; 136: 192 – 197.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.